-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcombine_json.py
220 lines (177 loc) · 7.36 KB
/
combine_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import json
import argparse
import pickle
import numpy as np
def BLEUDER(candidate, ref, df_data=None, df_nonexist=11.508355, bp=True):
ref_count = dict()
for word in ref:
ref_count[word] = ref_count.get(word, 0) + 1
cand_count = dict()
for word in candidate:
cand_count[word] = cand_count.get(word, 0) + 1
denominator = 0.0
numerator = 0.0
for k, v in cand_count.items():
df = df_data[k] if k in df_data else df_nonexist
denominator += v * df
if k in ref_count:
numerator += min(ref_count[k], cand_count[k]) * df
cbleu_p = float(numerator)/float(denominator)
if not bp:
return cbleu_p
if len(candidate) > len(ref):
BP = 1
else:
BP = np.exp(1 - float(len(ref))/len(candidate))
BLEU = cbleu_p#BP #*
return BLEU
def remove_no_digit(w):
s = ""
for c in w:
if c.isdigit():
s += c
return s
def remove_no_alpha(w):
s = ""
if isinstance(w, list):
for word in w:
for c in word:
if ord('A') <= ord(c) <= ord('Z') or ord('a') <= ord(c) <= ord('z'):
s += c
return s
for c in w:
if ord('A') <= ord(c) <= ord('Z') or ord('a') <= ord(c) <= ord('z'):
s += c
return s
def combine_json(thu_file, jieba_file, output_file, df_file=None):
df_file = pickle.load(open(df_file, 'rb'))
df_data = df_file['document_frequency']
df_nonexists = np.log(df_file['ref_len'])
num_dict = ['五','六','七','八','九','十','百','千','万']
num_dict1 = ['一','二', '三','四','五','六','七','八','九','十','百','千','万','亿']
thu_out = json.load(open(thu_file, encoding='utf8'))
jieba_out = json.load(open(jieba_file, encoding='utf8'))
final_out = open(output_file, 'w', encoding='utf8')
final_out.write("test_id,result\n")
new_out = {}
for i in range(len(thu_out)):
thu_item = thu_out[str(i)]
jieba_item = jieba_out[str(i)]
new_out[i] = thu_item['selected']
src_seg = thu_item['src_seg'].strip().split()
tgt_seg = thu_item['tgt_seg'].strip().split()
jieba_flag = False
if thu_item['selected'] != jieba_item['selected'] and (float(jieba_item['score']) < 0.3085 or float(jieba_item['score']) > 0.55):
jieba_flag = True
new_out[i] = jieba_item['selected']
if jieba_flag:
tgt_seg = jieba_item['tgt_seg'].split()
src_seg = jieba_item['src_seg'].split()
else:
tgt_seg = thu_item['tgt_seg'].split()
src_seg = thu_item['src_seg'].split()
score = max(float(thu_item['score']), float(jieba_item['score']))
ifselected = new_out[i] != 'null'
remove_flag = False
if not ifselected and BLEUDER(jieba_item['tgt_seg'].strip().split(), jieba_item['src_seg'].strip().split(),df_file, df_nonexists) > 0.65 and not remove_flag:
new_out[i] = jieba_item['src_id'] if jieba_flag and 'src_id' in jieba_item else thu_item['src_id']
digits = []
for w in tgt_seg:
if w[0].isdigit() or w[-1].isdigit():
digits.append(remove_no_digit(w))
dflag = True
for w in digits:
if (len(w) == 1 or w =='10') and len(set(''.join(src_seg)).intersection(set(num_dict1))) >= 1:
continue
if w not in src_seg and w not in remove_no_digit(''.join(src_seg)):
dflag = False
if len(digits) > 1 and not dflag and ifselected and score < 0.745: #
new_out[i] = 'null'
remove_flag = True
ifselected = new_out[i] != 'null'
score = max(float(thu_item['score']), float(jieba_item['score']))
digits = {}
for w in src_seg:
if w[0].isdigit() or w[-1].isdigit():
digits[remove_no_digit(w)] = 1
dflag = True
count = 0
for w in digits:
if (len(w) == 1 or w == '10') and len(set(''.join(tgt_seg)).intersection(set(num_dict1))) >= 1:
break
if w not in ''.join(tgt_seg):#
dflag = False
count += 1
if len(digits) >= 1 and not dflag and count and score < 0.57 and ifselected: #
new_out[i] = 'null'
remove_flag = True
digits = {}
for w in src_seg:
if w[0].isdigit():
digits[w] = 1
count = 0
for w in digits:
if (len(w) == 1 or w =='10') and len(set(''.join(tgt_seg)).intersection(set(num_dict1))) >= 1:
continue
if w in ''.join(tgt_seg):
continue
if w not in tgt_seg:
count += 1
score = max(float(thu_item['score']), float(jieba_item['score']))
if len(digits) >= 1 and float(score) + 0.05 * len(digits) - 0.2 * (count) > 0.51 and not ifselected and not remove_flag and score > 0.3:
print(digits, score, float(score) + 0.05 * len(digits) - 0.2 * (count), ' '.join(src_seg) + '\n', ' '.join(tgt_seg))
new_out[i] = jieba_item['src_id'] if jieba_flag and 'src_id' in jieba_item else thu_item['src_id']
ifselected = new_out[i] != 'null'
digits = []
for w in src_seg:
if w[0].isdigit() or w[-1].isdigit():
digits.append(remove_no_digit(w))
for w in num_dict:
if w in ''.join(tgt_seg):
digits = []
dflag = True
for w in digits:
if (len(w) == 1 or w == '10') and len(set(''.join(tgt_seg)).intersection(set(num_dict))) >= 1:
continue
if w == 'P005001':
continue
if w not in tgt_seg and w not in remove_no_digit(''.join(tgt_seg)):
dflag = False
if len(digits) > 1 and not dflag and ifselected and score < 0.73:
new_out[i] = 'null'
remove_flag = True
ifselected = new_out[i] != 'null'
digits = []
for w in src_seg:
if w[0].isdigit():
digits.append(w)
dflag = True
for w in digits:
if w not in tgt_seg:
dflag = False
digits = []
for w in tgt_seg:
if w[0].isdigit():
digits.append(w)
for w in digits:
if w not in src_seg:
dflag = False
if len(digits) > 1 and dflag and not ifselected and score > 0.3:
new_out[i] = jieba_item['src_id'] if jieba_flag and 'src_id' in jieba_item else thu_item['src_id']
ifselected = new_out[i] != 'null'
count = 0
for k, v in new_out.items():
tgt_id = thu_out[str(k)]['tgt_id']
final_out.write(str(tgt_id)+','+str(v)+'\n')
if v.strip() != thu_out[str(k)]['selected'].strip():
count += 1
print(count)
final_out.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input1', type=str, default='./final_output/exp/test_thu.csv.sentence')
parser.add_argument('--input2', type=str, default='./final_output/exp/test_jieba.csv.sentence')
parser.add_argument('--output', type=str, default="./final_output/exp/result_combined_nobp.csv")
parser.add_argument('--df_file', type=str, default='./final_output/seg/df_thu.p')
args = parser.parse_args()
combine_json(args.input1, args.input2, args.output, args.df_file)