-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
235 lines (196 loc) · 8.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import yaml
import json
import os
import matplotlib.pyplot as plt
from matplotlib import font_manager
import seaborn as sns
from collections import defaultdict
from datetime import datetime
import matplotlib.dates as mdates
sns.set_style("darkgrid")
font_path = "font/SourceHanSansCN-Regular.otf"
font_manager.fontManager.addfont(font_path)
prop = font_manager.FontProperties(fname=font_path)
plt.rcParams["font.family"] = "sans-serif"
plt.rcParams["font.sans-serif"] = prop.get_name()
plt.rcParams["axes.unicode_minus"] = False
plt.rcParams["date.converter"] = "concise"
def get_model_list(main_path):
"""
Get a model list from all yaml files in `main_path`.
"""
files = os.listdir(main_path)
model_list = list()
for file in files:
f = open(os.path.join(main_path, file), "r")
data = yaml.load(f.read(), Loader=yaml.FullLoader)
model_list.append(data)
f.close()
model_list = sorted(model_list, key=lambda x: (x["release_date"], x["name"]))
return model_list
def write_to_json(model_list, output_file):
"""
Write the model_list to a json file.
"""
f = open(output_file, "w")
f.write(json.dumps(model_list, ensure_ascii=False, indent=4) + "\n")
f.close()
print("[DONE] Write to {}.".format(output_file))
def get_identifier(model):
"""
Get identifier shown in the diagram
"""
domain = model["domain"]
if "Text" in domain:
language = model["language"]
if "English" in language:
identifier = "Text (English)"
elif "Chinese" in language:
identifier = "Text (Chinese)"
elif "Multilingual" in language:
identifier = "Text (Multilingual)"
else:
identifier = "Text (Others)"
else:
identifier = domain[0]
return identifier
def plot_scatter(model_list):
"""
Draw scatter diagram according to the number of parameters.
"""
fig = plt.figure(dpi=300, figsize=(12, 6))
parameters = defaultdict(list)
dates = defaultdict(list)
names = defaultdict(list)
color_map = {
"Text (English)": "#459F48",
"Text (Chinese)": "#F8B947",
"Text (Multilingual)": "#2F2EFC",
"Text (Others)": "#FC832E",
"Vision": "#953ACE",
"Audio": "#E63D2A",
"Code": "#A57041",
"Protein": "#4BB2EE"
}
last_updated = model_list[0]["last_updated"]
for model in model_list[1:]:
# we plot two points if a model have both dense and MoE variants
for variant in ["dense", "MoE"]:
if "parameters_{}".format(variant) in model:
id = get_identifier(model)
dates[id].append(model["release_date"])
param_list = sorted(
list(
map(
lambda x: float(x.split("~")[-1].split("B")[0]),
model["parameters_{}".format(variant)],
)
)
)
parameters[id].append(param_list[-1])
for id in color_map.keys():
x = list(map(lambda x: datetime.strptime(x, "%Y/%m/%d"), dates[id]))
y = parameters[id]
plt.scatter(
x,
y,
s=list(map(lambda x: x + 10, y)),
c=[color_map[id]],
marker="o",
alpha=0.7,
label=id,
)
for i, label in enumerate(names[id]):
plt.text(x[i], y[i], label, rotation=30, fontsize=6)
legend = plt.legend(loc="upper left")
for handle in legend.legendHandles:
handle.set_sizes([10.0])
plt.yscale("log", base=2)
plt.tight_layout()
plt.gca().xaxis.set_major_locator(mdates.AutoDateLocator(minticks=12, maxticks=20))
plt.margins(y=0.2)
plt.ylabel("Billion Parameters")
plt.text(0.5, 0.96, f"Last Updated: {last_updated}\n@OpenBMB", fontsize=6, c='gray', alpha=0.4, transform=plt.gca().transAxes)
plt.savefig("figures/scatter.png", dpi=fig.dpi, bbox_inches="tight")
print("[DONE] Draw Scatter diagram.")
def plot_bar(model_list):
"""
Draw bar chart w.r.t affiliations or time.
"""
cnt_affiliation = defaultdict(int)
params_affiliation = defaultdict(int)
cnt_time = defaultdict(int)
params_time = defaultdict(int)
last_updated = model_list[0]["last_updated"]
for model in model_list[1:]:
affiliation_list = model["affiliation"]
param_list = list()
if "parameters_MoE" in model:
param_list += model["parameters_MoE"]
if "parameters_dense" in model:
param_list += model["parameters_dense"]
param_list = sorted(
list(map(lambda x: float(x.split("~")[-1].split("B")[0]), param_list))
)
for affiliation in affiliation_list:
if affiliation == "Facebook" or affiliation == "Meta":
affiliation = "Meta(Facebook)"
cnt_affiliation[affiliation] += 1
params_affiliation[affiliation] += param_list[-1] # only count the largest model
date = model["release_date"]
y_m = date.rsplit('/', 1)[0]
cnt_time[y_m] += 1
params_time[y_m] += param_list[-1] # only count the largest model
x, y_cnt = list(zip(*sorted(cnt_affiliation.items(), key=lambda x: x[1], reverse=True)))
fig_cnt = plt.figure(dpi=300, figsize=(12, 6))
plt.bar(x, y_cnt, width=0.4, alpha=0.8, color="blue")
plt.xticks(rotation=90)
plt.ylabel("# Models")
plt.text(0.01, 0.96, f"Last Updated: {last_updated}\n@OpenBMB", fontsize=6, c='gray', alpha=0.4, transform=plt.gca().transAxes)
plt.savefig("figures/affiliation_cnt.png", dpi=fig_cnt.dpi, bbox_inches="tight")
print("[DONE] Draw bar chart (X: affiliation, Y: number of models).")
x, y_cnt = list(zip(*sorted(cnt_time.items(), key=lambda x: x[0], reverse=False)))
fig_cnt = plt.figure(dpi=300, figsize=(12, 6))
plt.bar(x, y_cnt, width=0.4, alpha=0.8, color="blue")
plt.xticks(rotation=90)
plt.ylabel("# Models")
plt.text(0.01, 0.96, f"Last Updated: {last_updated}\n@OpenBMB", fontsize=6, c='gray', alpha=0.4, transform=plt.gca().transAxes)
plt.savefig("figures/time_cnt.png", dpi=fig_cnt.dpi, bbox_inches="tight")
print("[DONE] Draw bar chart (X: time, Y: number of models).")
fig_params = plt.figure(dpi=300, figsize=(12, 6))
x, y_params = list(
zip(*sorted(params_affiliation.items(), key=lambda x: x[1], reverse=True))
)
plt.bar(x, y_params, width=0.4, alpha=0.8, color="blue")
plt.yscale("log", base=2)
plt.xticks(rotation=90)
plt.ylabel("Billion Parameters")
plt.text(0.01, 0.96, f"Last Updated: {last_updated}\n@OpenBMB", fontsize=6, c='gray', alpha=0.4, transform=plt.gca().transAxes)
plt.savefig("figures/affiliation_params.png", dpi=fig_params.dpi, bbox_inches="tight")
print("[DONE] Draw bar chart (X: affiliation, Y: number of parameters).")
fig_params = plt.figure(dpi=300, figsize=(12, 6))
x, y_params = list(
zip(*sorted(params_time.items(), key=lambda x: x[0], reverse=False))
)
plt.bar(x, y_params, width=0.4, alpha=0.8, color="blue")
plt.yscale("log", base=2)
plt.xticks(rotation=90)
plt.ylabel("Billion Parameters")
plt.text(0.01, 0.96, f"Last Updated: {last_updated}\n@OpenBMB", fontsize=6, c='gray', alpha=0.4, transform=plt.gca().transAxes)
plt.savefig("figures/time_params.png", dpi=fig_params.dpi, bbox_inches="tight")
print("[DONE] Draw bar chart (X: time, Y: number of parameters).")
if __name__ == "__main__":
main_path = "./big_models"
json_file = "all_models.json"
with open(json_file, 'r') as f:
old_model_list = json.load(f)[1:]
model_list = get_model_list(main_path)
if model_list != old_model_list:
print("The model list is updated. Start to regenerate files.")
# add last updated date
model_list = [{"last_updated": datetime.now().strftime("%Y/%m/%d")}] + model_list
write_to_json(model_list, json_file)
if not os.path.exists("figures"):
os.mkdir("figures")
plot_scatter(model_list)
plot_bar(model_list)