-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain.py
934 lines (855 loc) · 33.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
import argparse
import datetime
import glob
import inspect
import os
import sys
from inspect import Parameter
import imageio
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision
from PIL import Image
from einops import rearrange
from matplotlib import pyplot as plt
from natsort import natsorted
from omegaconf import OmegaConf
from packaging import version
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.utilities import rank_zero_only
from safetensors.torch import load_file as load_safetensors
import init_proj_path
from vwm.util import instantiate_from_config, isheatmap
MULTINODE_HACKS = True
def default_trainer_args():
argspec = dict(inspect.signature(Trainer.__init__).parameters)
argspec.pop("self")
default_args = {
param: argspec[param].default
for param in argspec
if argspec[param] != Parameter.empty
}
return default_args
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir"
)
parser.add_argument(
"--no_date",
type=str2bool,
nargs="?",
const=True,
default=False,
help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)"
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir"
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. "
"Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`",
default=list()
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=True,
nargs="?",
help="train"
)
parser.add_argument(
"--no_test",
type=str2bool,
const=True,
default=True,
nargs="?",
help="disable test"
)
parser.add_argument(
"-p",
"--project",
help="name of new or path to existing project"
)
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging"
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=23,
help="seed for seed_everything"
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name"
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging data"
)
parser.add_argument(
"--scale_lr",
type=str2bool,
nargs="?",
const=True,
default=False,
help="scale base-lr by ngpu * batch_size * n_accumulate"
)
parser.add_argument(
"--legacy_naming",
type=str2bool,
nargs="?",
const=True,
default=False,
help="name run based on config file name if true, else by whole path"
)
parser.add_argument(
"--enable_tf32",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12"
)
parser.add_argument(
"--no_base_name",
type=str2bool,
nargs="?",
const=True,
default=False,
help="no config name"
)
if version.parse(pl.__version__) >= version.parse("2.0.0"):
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="single checkpoint file to resume from"
)
parser.add_argument(
"--n_devices",
type=int,
default=8,
help="number of gpus in training"
)
parser.add_argument(
"--finetune",
type=str,
default="ckpts/pytorch_model.bin",
help="path to checkpoint to finetune from"
)
default_args = default_trainer_args()
for key in default_args:
parser.add_argument("--" + key, default=default_args[key])
return parser
def get_checkpoint_name(logdir):
ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
ckpt = natsorted(glob.glob(ckpt))
print("Available last checkpoints:", ckpt)
if len(ckpt) > 1:
print("Got most recent checkpoint")
ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
print(f"Most recent ckpt is {ckpt}")
with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
f.write(ckpt + "\n")
try:
version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
except Exception as e:
# version confusion but not bad
print(e)
version = 1
# version = last_version + 1
else:
# in this case, we only have one "last.ckpt"
ckpt = ckpt[0]
version = 1
melk_ckpt_name = f"last-v{version}.ckpt"
print(f"Current melk ckpt name: {melk_ckpt_name}")
return ckpt, melk_ckpt_name
def save_img_seq_to_video(out_path, img_seq, fps):
# img_seq: np array
writer = imageio.get_writer(out_path, fps=fps)
for img in img_seq:
writer.append_data(img)
writer.close()
class SetupCallback(Callback):
def __init__(
self,
resume,
now,
logdir,
ckptdir,
cfgdir,
config,
lightning_config,
debug,
ckpt_name=None
):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
self.debug = debug
self.ckpt_name = ckpt_name
def on_exception(self, trainer: pl.Trainer, pl_module, exception):
if not self.debug and trainer.global_rank == 0:
# print("Summoning checkpoint")
# if self.ckpt_name is None:
# ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
# else:
# ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
# trainer.save_checkpoint(ckpt_path)
print("Exiting")
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
if "callbacks" in self.lightning_config:
if "metrics_over_trainsteps_checkpoint" in self.lightning_config["callbacks"]:
os.makedirs(
os.path.join(self.ckptdir, "trainstep_checkpoints"),
exist_ok=True
)
print("Project config")
print(OmegaConf.to_yaml(self.config))
if MULTINODE_HACKS:
import time
time.sleep(5)
OmegaConf.save(
self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))
)
print("Lightning config")
print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(
OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))
)
else:
# ModelCheckpoint callback created log directory, remove it
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
try:
os.rename(self.logdir, dst)
except FileNotFoundError:
pass
class ImageLogger(Callback):
def __init__(
self,
batch_frequency,
clamp=True,
increase_log_steps=True,
rescale=True,
disabled=False,
log_on_batch_idx=False,
log_first_step=False,
log_images_kwargs=None,
log_before_first_step=False,
enable_autocast=True,
num_frames=25
):
super().__init__()
self.enable_autocast = enable_autocast
self.rescale = rescale
self.batch_freq = batch_frequency
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else dict()
self.log_first_step = log_first_step
self.log_before_first_step = log_before_first_step
self.num_frames = num_frames
@rank_zero_only
def log_local(
self,
save_dir,
split,
images,
global_step,
current_epoch,
batch_idx
):
root = os.path.join(save_dir, "images", split)
for log_type in images:
if isheatmap(images[log_type]):
fig, ax = plt.subplots()
ax = ax.matshow(
images[log_type].cpu().numpy(), cmap="hot", interpolation="lanczos"
)
plt.colorbar(ax)
plt.axis("off")
filename = "{}_epoch{:03}_batch{:06}_step{:06}.png".format(
log_type, current_epoch, batch_idx, global_step
)
os.makedirs(root, exist_ok=True)
path = os.path.join(root, log_type, filename)
plt.savefig(path)
plt.close()
elif "mp4" in log_type:
dir_path = os.path.join(root, log_type)
os.makedirs(dir_path, exist_ok=True)
img_seq = images[log_type]
if self.rescale:
img_seq = (img_seq + 1.0) / 2.0
img_seq = rearrange(img_seq, "(b t) c h w -> b t h w c", t=self.num_frames)
B, T = img_seq.shape[:2]
for b_i in range(B):
cur_img_seq = img_seq[b_i].numpy() # [t h w c]
cur_img_seq = (cur_img_seq * 255).astype(np.uint8) # [t h w c]
filename = "{}_epoch{:02}_batch{:04}_step{:06}.mp4".format(
log_type, current_epoch, batch_idx, global_step
)
save_img_seq_to_video(os.path.join(root, log_type, filename), cur_img_seq, fps=10)
else:
grid = torchvision.utils.make_grid(images[log_type], nrow=int(images[log_type].shape[0] ** 0.5))
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{}_epoch{:02}_batch{:04}_step{:06}.png".format(
log_type, current_epoch, batch_idx, global_step
)
dir_path = os.path.join(root, log_type)
os.makedirs(dir_path, exist_ok=True)
path = os.path.join(dir_path, filename)
img = Image.fromarray(grid)
img.save(path)
@rank_zero_only
def log_img(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (
self.check_frequency(check_idx)
and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
and callable(pl_module.log_images)
) or split == "test":
is_train = pl_module.training
if is_train:
pl_module.eval()
gpu_autocast_kwargs = {
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled()
}
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
for log_type in images:
if isinstance(images[log_type], torch.Tensor):
images[log_type] = images[log_type].detach().float().cpu()
if self.clamp and not isheatmap(images[log_type]):
images[log_type] = torch.clamp(images[log_type], -1.0, 1.0)
self.log_local(
pl_module.logger.save_dir,
split,
images,
pl_module.global_step,
pl_module.current_epoch,
batch_idx
)
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
if (check_idx % self.batch_freq == 0 or check_idx in self.log_steps) and (check_idx > 0 or self.log_first_step):
try:
self.log_steps.pop(0)
except IndexError as e:
print(e)
pass
return True
else:
return False
@rank_zero_only
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_img(pl_module, batch, batch_idx, split="train")
@rank_zero_only
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
if self.log_before_first_step and pl_module.global_step == 0:
print(f"{self.__class__.__name__}: logging before training")
self.log_img(pl_module, batch, batch_idx, split="train")
@rank_zero_only
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs):
if not self.disabled and pl_module.global_step > 0:
self.log_img(pl_module, batch, batch_idx, split="val")
@rank_zero_only
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
self.log_img(pl_module, batch, batch_idx, split="test")
if __name__ == "__main__":
# custom parser to specify config files, train, test and debug mode, postfix, resume
# `--key value` arguments are interpreted as arguments to the trainer
# `nested.key=value` arguments are interpreted as config parameters
# configs are merged from left-to-right followed by command line parameters
# model:
# base_learning_rate: float
# target: path to lightning module
# params:
# key: value
# data:
# target: train.DataModuleFromConfig
# params:
# batch_size: int
# wrap: bool
# train:
# target: path to train dataset
# params:
# key: value
# validation:
# target: path to validation dataset
# params:
# key: value
# test:
# target: path to test dataset
# params:
# key: value
# lightning: (optional, has sane defaults and can be specified on cmd line)
# trainer:
# additional arguments to trainer
# logger:
# logger to instantiate
# modelcheckpoint:
# modelcheckpoint to instantiate
# callbacks:
# callback1:
# target: importpath
# params:
# key: value
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# add cwd for convenience and to make classes in this file available when
# running as `python train.py`
# (in particular `train.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
"-n/--name and -r/--resume cannot be specified both. "
"If you want to resume training in a new log folder, "
"use -n/--name in combination with --resume_from_checkpoint"
)
melk_ckpt_name = None
name = None
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
# idx = len(paths)-paths[::-1].index("logs")+1
# logdir = "/".join(paths[:idx])
logdir = "/".join(paths[:-2])
ckpt = opt.resume
_, melk_ckpt_name = get_checkpoint_name(logdir)
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
print("#" * 100)
print(f"Resuming from checkpoint `{ckpt}`")
print("#" * 100)
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[-1]
else:
if opt.name:
name = "_" + opt.name
elif opt.base:
if opt.no_base_name:
name = ""
else:
if opt.legacy_naming:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
else:
assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
opt.base[0]
)[0]
cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
os.path.split(opt.base[0])[0].split(os.sep).index("configs")
+ 1:
] # cut away the first one (we assert all configs are in "configs")
cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
name = "_" + cfg_name
else:
name = ""
if opt.no_date:
nowname = name + opt.postfix
if nowname.startswith("_"):
nowname = nowname[1:]
else:
nowname = now + name + opt.postfix
logdir = os.path.join(opt.logdir, nowname)
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
seed_everything(opt.seed, workers=True)
# move before model init, in case a torch.compile(...) is called somewhere
if opt.enable_tf32:
# pt_version = version.parse(torch.__version__)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print(f"Enabling TF32 for PyTorch {torch.__version__}")
else:
print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
print(f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}")
print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to gpu
trainer_config["accelerator"] = "gpu"
standard_args = default_trainer_args()
for k in standard_args:
if getattr(opt, k) != standard_args[k]:
trainer_config[k] = getattr(opt, k)
n_devices = getattr(opt, "n_devices", None)
if n_devices is not None:
assert isinstance(n_devices, int) and n_devices > 0
devices = [str(i) for i in range(n_devices)]
trainer_config["devices"] = ",".join(devices) + ","
else:
assert "devices" in trainer_config, "Must specify either n_devices or devices"
ckpt_resume_path = opt.resume_from_checkpoint
if "devices" not in trainer_config and trainer_config["accelerator"] != "gpu":
del trainer_config["accelerator"]
cpu = True
else:
gpuinfo = trainer_config["devices"]
print(f"Running on GPUs {gpuinfo}")
cpu = False
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
# use pretrained model
if not opt.resume or opt.finetune:
if not opt.finetune or not os.path.exists(opt.finetune):
default_ckpt = "ckpts/svd_xt.safetensors"
print(f"Loading pretrained model from {default_ckpt}")
svd = load_safetensors(default_ckpt)
for k in list(svd.keys()):
if "time_embed" in k: # duplicate a new timestep embedding from the pretrained weights
svd[k.replace("time_embed", "cond_time_stack_embed")] = svd[k]
else:
ckpt_path = opt.finetune
print(f"Loading pretrained model from {ckpt_path}")
if ckpt_path.endswith("ckpt"):
svd = torch.load(ckpt_path, map_location="cpu")["state_dict"]
elif ckpt_path.endswith("bin"): # for deepspeed merged checkpoints
svd = torch.load(ckpt_path, map_location="cpu")
for k in list(svd.keys()): # remove the prefix
if "_forward_module" in k:
svd[k.replace("_forward_module.", "")] = svd[k]
del svd[k]
elif ckpt_path.endswith("safetensors"):
svd = load_safetensors(ckpt_path)
else:
raise NotImplementedError
missing, unexpected = model.load_state_dict(svd, strict=False)
# avoid empty weights when resuming from EMA weights
for miss_k in missing:
ema_name = miss_k.replace(".", "").replace("modeldiffusion_model", "model_ema.diffusion_model")
if ema_name in svd:
svd[miss_k] = svd[ema_name]
print("Fill", miss_k, "with", ema_name)
missing, unexpected = model.load_state_dict(svd, strict=False)
if len(missing) > 0:
if not opt.finetune or not os.path.exists(opt.finetune):
model.reinit_ema()
missing = [model_key for model_key in missing if "model_ema" not in model_key]
# print(f"Missing keys: {missing}")
print(f"Missing keys: {missing}")
# if len(unexpected) > 0:
# print(f"Unexpected keys: {unexpected}")
print(f"Unexpected keys: {unexpected}")
# trainer and callbacks
trainer_kwargs = dict()
# default logger configs
default_logger_cfgs = {
"csv": {
"target": "pytorch_lightning.loggers.CSVLogger",
"params": {
"name": "testtube", # hack for sbord fanatics
"save_dir": logdir
}
}
}
default_logger_cfg = default_logger_cfgs["csv"]
if "logger" in lightning_config:
logger_cfg = lightning_config.logger
else:
logger_cfg = OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
# use TrainResult/EvalResult(checkpoint_on=metric) to specify which metric is used to determine best models
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{epoch:02}",
"verbose": True,
"save_last": True,
"save_top_k": -1
}
}
# if hasattr(model, "monitor"):
# print(f"Monitoring {model.monitor} as checkpoint metric")
# default_modelckpt_cfg["params"]["monitor"] = model.monitor
# default_modelckpt_cfg["params"]["save_top_k"] = 3
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
# default to ddp if not further specified
default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
if "strategy" in lightning_config:
strategy_cfg = lightning_config.strategy
else:
strategy_cfg = OmegaConf.create()
default_strategy_config["params"] = {
"find_unused_parameters": True
}
strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
print(
f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
)
trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "train.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
"debug": opt.debug,
"ckpt_name": melk_ckpt_name
}
},
"image_logger": {
"target": "train.ImageLogger",
"params": {
"batch_frequency": 1000,
"clamp": True
}
},
"learning_rate_logger": {
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
"params": {
"logging_interval": "step"
}
}
}
if version.parse(pl.__version__) >= version.parse("1.4.0"):
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
# if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
# print(
# "WARNING: saving checkpoints every n train steps without deleting, this might require some free space"
# )
# default_metrics_over_trainsteps_ckpt_dict = {
# "metrics_over_trainsteps_checkpoint": {
# "target": "pytorch_lightning.callbacks.ModelCheckpoint",
# "params": {
# "dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
# "filename": "{epoch:06}-{step:09}",
# "verbose": True,
# "save_top_k": -1,
# "every_n_train_steps": 10000,
# "save_weights_only": True
# }
# }
# }
# default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
elif "ignore_keys_callback" in callbacks_cfg:
del callbacks_cfg["ignore_keys_callback"]
trainer_kwargs["callbacks"] = [
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
]
if not "plugins" in trainer_kwargs:
trainer_kwargs["plugins"] = list()
# cmd line trainer args (which are in trainer_opt) have always priority over
# config-trainer-args (which are in trainer_kwargs)
trainer_opt = vars(trainer_opt)
trainer_kwargs = {
key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
}
trainer = Trainer(**trainer_opt, **trainer_kwargs)
trainer.logdir = logdir
# data
data = instantiate_from_config(config.data)
# NOTE: according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary, but it is
# lightning still takes care of proper multiprocessing though
data.prepare_data()
# data.setup()
print("##### Data #####")
try:
for k in data.datasets:
print(
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
)
except:
print("Datasets not yet initialized")
# configure learning rate
if "batch_size" in config.data.params:
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
else:
bs, base_lr = (
config.data.params.train.loader.batch_size,
config.model.base_learning_rate
)
if cpu:
ngpu = 1
else:
ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
if "accumulate_grad_batches" in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
if opt.scale_lr:
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print(
"Setting learning rate to "
"{:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batch_size) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
)
)
else:
model.learning_rate = base_lr
print("++++ NOT USING LR SCALING ++++")
print(f"Setting learning rate to {model.learning_rate:.2e}")
# allow checkpointing via USR1
def melk(*args, **kwargs):
# run all checkpoint hooks
if trainer.global_rank == 0:
# print("Summoning checkpoint")
# if melk_ckpt_name is None:
# ckpt_path = os.path.join(ckptdir, "last.ckpt")
# else:
# ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
# trainer.save_checkpoint(ckpt_path)
print("Exiting")
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
# run
if opt.train:
trainer.fit(model, data, ckpt_path=ckpt_resume_path)
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data)
except RuntimeError as error:
# if MULTINODE_HACKS:
# import datetime
# import os
# import socket
#
# import requests
#
# device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
# hostname = socket.gethostname()
# ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
# resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
# print(
# f"ERROR at {ts} "
# f"on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
# flush=True
# )
raise error
except Exception:
if opt.debug and trainer.global_rank == 0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank == 0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
# if trainer.global_rank == 0:
# print(trainer.profiler.summary())