-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
588 lines (528 loc) · 19.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import *
import os
import glob
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
import numpy as np
import gc
from PIL import Image
import cv2
import time
import socket
import scipy
import argparse
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
from skimage.metrics import structural_similarity as compare_ssim
from multiprocessing import Pool
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
import threading
from functools import wraps
from tqdm import tqdm
import exifread
import rawpy
import math
import yaml
import pickle
import warnings
import h5py
import pickle as pkl
fn_time = {}
def timestamp(time_points, n):
time_points[n] = time.time()
return time_points[n] - time_points[n-1]
def fn_timer(function, print_log=False):
@wraps(function)
def function_timer(*args, **kwargs):
global fn_timer
t0 = time.time()
result = function(*args, **kwargs)
t1 = time.time()
if print_log:
print ("Total time running %s: %.6f seconds" %
(function.__name__, t1-t0))
if function.__name__ in fn_time :
fn_time[function.__name__] += t1-t0
else:
fn_time[function.__name__] = t1-t0
return result
return function_timer
def log(string, log=None, str=False, end='\n', notime=False):
log_string = f'{time.strftime("%Y-%m-%d %H:%M:%S")} >> {string}' if not notime else string
print(log_string)
if log is not None:
with open(log,'a+') as f:
f.write(log_string+'\n')
else:
pass
# os.makedirs('worklog', exist_ok=True)
# log = f'worklog/worklog-{time.strftime("%Y-%m-%d")}.txt'
# with open(log,'a+') as f:
# f.write(log_string+'\n')
if str:
return string+end
def read_paired_fns(filename):
with open(filename) as f:
fns = f.readlines()
fns = [tuple(fn.strip().split(' ')) for fn in fns]
return fns
def metrics_recorder(file, names, psnrs, ssims):
if os.path.exists(file):
with open(file, 'rb') as f:
metrics = pkl.load(f)
else:
metrics = {}
for name, psnr, ssim in zip(names, psnrs, ssims):
metrics[name] = [psnr, ssim]
with open(file, 'wb') as f:
pkl.dump(metrics, f)
return metrics
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f', log=True, last_epoch=0):
self.name = name
self.fmt = fmt
self.log = log
self.history = []
self.last_epoch = last_epoch
self.history_init_flag = False
self.reset()
def reset(self):
if self.log:
try:
if self.avg>0: self.history.append(self.avg)
except:
pass#print(f'Start log {self.name}!')
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def plot_history(self, savefile='log.jpg', logfile='log.pkl'):
# 读取老log
if os.path.exists(logfile) and not self.history_init_flag:
self.history_init_flag = True
with open(logfile, 'rb') as f:
history_old = pickle.load(f)
if self.last_epoch: # 为0则重置
self.history = history_old + self.history[:self.last_epoch]
# 记录log
with open(logfile, 'wb') as f:
pickle.dump(self.history, f)
# 画图
plt.figure(figsize=(12,9))
plt.title(f'{self.name} log')
x = list(range(len(self.history)))
plt.plot(x, self.history)
plt.xlabel('Epoch')
plt.ylabel(self.name)
plt.savefig(savefile, bbox_inches='tight')
plt.close()
def __str__(self):
fmtstr = '{name}:{val' + self.fmt + '}({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def pkl_convert(param):
return {
k.replace("module.", ""): v
for k, v in param.items()
if "module." in k
}
def read_wb_ccm(raw):
wb = np.array(raw.camera_whitebalance)
wb /= wb[1]
wb = wb.astype(np.float32)
ccm = raw.color_matrix[:3, :3].astype(np.float32)
if ccm[0,0] == 0:
ccm = np.eye(3, dtype=np.float32)
return wb, ccm
def get_ISO_ExposureTime(filepath):
# 不限于RAW,RGB图片也适用
raw_file = open(filepath, 'rb')
exif_file = exifread.process_file(raw_file, details=False, strict=True)
# 获取曝光时间
if 'EXIF ExposureTime' in exif_file:
exposure_str = exif_file['EXIF ExposureTime'].printable
else:
exposure_str = exif_file['Image ExposureTime'].printable
if '/' in exposure_str:
fenmu = float(exposure_str.split('/')[0])
fenzi = float(exposure_str.split('/')[-1])
exposure = fenmu / fenzi
else:
exposure = float(exposure_str)
# 获取ISO
if 'EXIF ISOSpeedRatings' in exif_file:
ISO_str = exif_file['EXIF ISOSpeedRatings'].printable
else:
ISO_str = exif_file['Image ISOSpeedRatings'].printable
if '/' in ISO_str:
fenmu = float(ISO_str.split('/')[0])
fenzi = float(ISO_str.split('/')[-1])
ISO = fenmu / fenzi
else:
ISO = float(ISO_str)
info = {'ISO':int(ISO), 'ExposureTime':exposure, 'name':filepath.split('/')[-1]}
return info
def load_weights(model, pretrained_dict, multi_gpu=False, by_name=False):
model_dict = model.module.state_dict() if multi_gpu else model.state_dict()
# 1. filter out unnecessary keys
tsm_replace = []
for k in pretrained_dict:
if 'tsm_shift' in k:
k_new = k.replace('tsm_shift', 'tsm_buffer')
tsm_replace.append((k, k_new))
for k, k_new in tsm_replace:
pretrained_dict[k_new] = pretrained_dict[k]
if by_name:
del_list = []
for k, v in pretrained_dict.items():
if k in model_dict:
if model_dict[k].shape != pretrained_dict[k].shape:
# 1. Delete values not in key
del_list.append(k)
# 2. Cat it to the end
# diff = model_dict[k].size()[1] - pretrained_dict[k].size()[1]
# v = torch.cat((v, v[:,:diff]), dim=1)
# 3. Repeat it to same
# nframe = model_dict[k].shape[1] // pretrained_dict[k].shape[1]
# v = torch.repeat_interleave(v, nframe, dim=1)
# 4. Clip it to same
# b_model, c_model, h_model, w_model = model_dict[k].shape
# c_save = pretrained_dict[k].shape[1]
# c_diff = c_model - c_save
# if c_model > c_save:
# v = torch.cat((v, torch.empty(b_model, c_diff, h_model, w_model).cuda()), dim=1)
# else:
# v = v[:,:c_diff]
log(f'Warning: "{k}":{pretrained_dict[k].shape}->{model_dict[k].shape}')
pretrained_dict[k] = v
else:
del_list.append(k)
log(f'Warning: "{k}" is not exist and has been deleted!!')
for k in del_list:
del pretrained_dict[k]
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
if multi_gpu:
model.module.load_state_dict(model_dict)
else:
model.load_state_dict(model_dict)
return model
def tensor_dim5to4(tensor):
batchsize, crops, c, h, w = tensor.shape
tensor = tensor.reshape(batchsize*crops, c, h, w)
return tensor
def tensor_dim6to5(tensor):
batchsize, crops, t, c, h, w = tensor.shape
tensor = tensor.reshape(batchsize*crops, t, c, h, w)
return tensor
def frame_index_splitor(nframes=1, pad=True, reflect=True):
# [b, 7, c, h ,w]
r = nframes // 2
length = 7 if pad else 8-nframes
frames = []
for i in range(length):
frames.append([None]*nframes)
if pad:
for i in range(7):
for k in range(nframes):
frames[i][k] = i+k-r
else:
for i in range(8-nframes):
for k in range(nframes):
frames[i][k] = i+k
if reflect:
frames = num_reflect(frames,0,6)
else:
frames = num_clip(frames, 0, 6)
return frames
def multi_frame_loader(frames ,index, gt=False, keepdims=False):
loader = []
for ind in index:
imgs = []
if gt:
r = len(index[0]) // 2
tensor = frames[:,ind[r],:,:,:]
if keepdims:
tensor = tensor.unsqueeze(dim=1)
else:
for i in ind:
imgs.append(frames[:,i,:,:,:])
tensor = torch.stack(imgs, dim=1)
loader.append(tensor)
return torch.stack(loader, dim=0)
def num_clip(nums, mininum, maxinum):
nums = np.array(nums)
nums = np.clip(nums, mininum, maxinum)
return nums
def num_reflect(nums, mininum, maxinum):
nums = np.array(nums)
nums = np.abs(nums-mininum)
nums = maxinum-np.abs(maxinum-nums)
return nums
def get_host_with_dir(dataset_name=''):
multi_gpu = False
hostname = socket.gethostname()
log(f"User's hostname is '{hostname}'")
if hostname == 'fenghansen':
host = '/data'
elif hostname == 'DESKTOP-FCAMIOQ':
host = 'F:/datasets'
elif hostname == 'BJ-DZ0101767':
host = 'F:/Temp'
else:
host = '/data'
multi_gpu = True if torch.cuda.device_count() > 1 else False
return hostname, host + dataset_name, multi_gpu
def scale_down(img):
return np.float32(img) / 255.
def scale_up(img):
return np.uint8(img * 255.)
def feature_vis(tensor, name='out', save=False):
feature = tensor.detach().cpu().numpy().transpose(0,2,3,1)
if save:
for i in range(len(feature)):
cv2.imwrite(f'./test/{name}_{i}.png', np.uint8(feature[i,:,:,::-1]*255))
return feature
def bayer2rggb(bayer):
H, W = bayer.shape
return bayer.reshape(H//2, 2, W//2, 2).transpose(0, 2, 1, 3).reshape(H//2, W//2, 4)
def rggb2bayer(rggb):
H, W, _ = rggb.shape
return rggb.reshape(H, W, 2, 2).transpose(0, 2, 1, 3).reshape(H*2, W*2)
def repair_bad_pixels(raw, bad_points, method='median'):
fixed_raw = bayer2rggb(raw)
for i in range(4):
fixed_raw[:,:,i] = cv2.medianBlur(fixed_raw[:,:,i],3)
fixed_raw = rggb2bayer(fixed_raw)
# raw = (1-bpc_map) * raw + bpc_map * fixed_raw
for p in bad_points:
raw[p[0],p[1]] = fixed_raw[p[0],p[1]]
return raw
def img4c_to_RGB(img4c, metadata=None, gamma=2.2):
h,w,c = img4c.shape
H = h * 2
W = w * 2
raw = np.zeros((H,W), np.float32)
red_gain = metadata['red_gain'] if metadata is not None else 1
blue_gain = metadata['blue_gain'] if metadata is not None else 1
rgb_gain = metadata['rgb_gain'] if metadata is not None else 1
raw[0:H:2,0:W:2] = img4c[:,:,0] * red_gain # R
raw[0:H:2,1:W:2] = img4c[:,:,1] # G1
raw[1:H:2,1:W:2] = img4c[:,:,2] * blue_gain # B
raw[1:H:2,0:W:2] = img4c[:,:,3] # G2
raw = np.clip(raw * rgb_gain, 0, 1)
white_point = 16383
raw = raw * white_point
img = cv2.cvtColor(raw.astype(np.uint16), cv2.COLOR_BAYER_BG2RGB_EA) / white_point
ccms = np.array([[ 1.7479, -0.7025, -0.0455],
[-0.2163, 1.5111, -0.2948],
[ 0.0054, -0.6514, 1.6460]])
img = img[:, :, None, :]
ccms = ccms[None, None, :, :]
img = np.sum(img * ccms, axis=-1)
img = np.clip(img, 0, 1) ** (1/gamma)
return img
def FastGuidedFilter(p,I,d=7,eps=1):
p_lr = cv2.resize(p, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)
I_lr = cv2.resize(I, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)
mu_p = cv2.boxFilter(p_lr, -1, (d, d))
mu_I = cv2.boxFilter(I_lr,-1, (d, d))
II = cv2.boxFilter(np.multiply(I_lr,I_lr), -1, (d, d))
Ip = cv2.boxFilter(np.multiply(I_lr,p_lr), -1, (d, d))
var = II-np.multiply(mu_I,mu_I)
cov = Ip-np.multiply(mu_I,mu_p)
a = cov / (var + eps)
b = mu_p - np.multiply(a,mu_I)
mu_a = cv2.resize(cv2.boxFilter(a, -1, (d, d)), None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
mu_b = cv2.resize(cv2.boxFilter(b, -1, (d, d)), None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
dstImg = np.multiply(mu_a, I) + mu_b
return dstImg
def GuidedFilter(p,I,d=7,eps=1):
mu_p = cv2.boxFilter(p, -1, (d, d), borderType=cv2.BORDER_REPLICATE)
mu_I = cv2.boxFilter(I,-1, (d, d), borderType=cv2.BORDER_REPLICATE)
II = cv2.boxFilter(np.multiply(I,I), -1, (d, d), borderType=cv2.BORDER_REPLICATE)
Ip = cv2.boxFilter(np.multiply(I,p), -1, (d, d), borderType=cv2.BORDER_REPLICATE)
var = II-np.multiply(mu_I,mu_I)
cov = Ip-np.multiply(mu_I,mu_p)
a = cov / (var + eps)
b = mu_p - np.multiply(a,mu_I)
mu_a = cv2.boxFilter(a, -1, (d, d), borderType=cv2.BORDER_REPLICATE)
mu_b = cv2.boxFilter(b, -1, (d, d), borderType=cv2.BORDER_REPLICATE)
dstImg = np.multiply(mu_a, I) + mu_b
return dstImg
def plot_sample(img_lr, img_dn, img_hr, filename='result', model_name='Unet',
epoch=-1, print_metrics=False, save_plot=True, save_path='./', res=None):
if np.max(img_hr) <= 1:
# 变回uint8
img_lr = scale_up(img_lr)
img_dn = scale_up(img_dn)
img_hr = scale_up(img_hr)
# 计算PSNR和SSIM
if res is None:
psnr = []
ssim = []
psnr.append(compare_psnr(img_hr, img_lr))
psnr.append(compare_psnr(img_hr, img_dn))
ssim.append(compare_ssim(img_hr, img_lr, multichannel=True))
ssim.append(compare_ssim(img_hr, img_dn, multichannel=True))
psnr.append(-1)
ssim.append(-1)
else:
psnr = [res[0], res[2], -1]
ssim = [res[1], res[3], -1]
# Images and titles
images = {
'Noisy Image': img_lr,
model_name: img_dn,
'Ground Truth': img_hr
}
if os.path.exists(save_path) is False:
os.makedirs(save_path)
# Plot the images. Note: rescaling and using squeeze since we are getting batches of size 1
fig, axes = plt.subplots(1, 3, figsize=(20, 6))
for i, (title, img) in enumerate(images.items()):
axes[i].imshow(img)
axes[i].set_title("{} - {} - psnr:{:.2f} - ssim{:.4f}".format(title, img.shape, psnr[i], ssim[i]))
axes[i].axis('off')
plt.suptitle('{} - Epoch: {}'.format(filename, epoch))
if print_metrics:
log('PSNR:', psnr)
log('SSIM:', ssim)
# Save directory
if os.path.exists(save_path) is False:
os.makedirs(save_path)
savefile = os.path.join(save_path, "{}-Epoch{}.jpg".format(filename, epoch))
if save_plot:
denoisedfile = os.path.join(save_path, "{}_denoised.png".format(filename))
cv2.imwrite(denoisedfile, img_dn[:,:,::-1])
fig.savefig(savefile, bbox_inches='tight')
plt.close()
return psnr, ssim
def save_picture(img_sr, save_path='./images/test',frame_id='0000'):
# 变回uint8
img_sr = scale_up(img_sr.transpose(1,2,0))
if os._exists(save_path) is not True:
os.makedirs(save_path, exist_ok=True)
plt.imsave(os.path.join(save_path, frame_id+'.png'), img_sr)
gc.collect()
def test_output_rename(root_dir):
for dirs in os.listdir(root_dir):
dirpath = root_dir + '/' + dirs
f = os.listdir(dirpath)
end = len(f)
for i in range(len(f)):
frame_id = int(f[end-i-1][:4])
old_file = os.path.join(dirpath, "%04d.png" % frame_id)
new_file = os.path.join(dirpath, "%04d.png" % (frame_id + 1))
os.rename(old_file, new_file)
log(f"path |{dirpath}|'s rename has finished...")
def datalist_rename(root_dir):
src_file = os.path.join(root_dir, 'sep_testlist.txt')
dst_file = os.path.join(root_dir, 'sep_evallist.txt')
sub_dirs = []
fw = open(dst_file, 'w')
with open(src_file, 'r') as f:
lines = [line[:-1] for line in f.readlines()]
for sub_path in lines:
if sub_path[:5] in sub_dirs: continue
sub_dirs.append(sub_path[:5])
print(sub_path, file=fw)
fw.close()
return sub_dirs
def tensor2im(image_tensor, visualize=False, video=False):
image_tensor = image_tensor.detach()
if visualize:
image_tensor = image_tensor[:, 0:3, ...]
if not video:
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0))) * 255.0
else:
image_numpy = image_tensor.cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (0, 2, 3, 1))) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
return image_numpy
def quality_assess(X, Y, data_range=255):
# Y: correct; X: estimate
if X.ndim == 3:
psnr = compare_psnr(Y, X, data_range=data_range)
ssim = compare_ssim(Y, X, data_range=data_range, multichannel=True)
return {'PSNR':psnr, 'SSIM': ssim}
else:
raise NotImplementedError
def bayer2rows(bayer):
H, W = bayer.shape
return np.stack((bayer[0:H:2], bayer[1:H:2]))
def rows2bayer(rows):
c, H, W = rows.shape
bayer = np.empty((H*2, W))
bayer[0:H*2:2] = rows[0]
bayer[1:H*2:2] = rows[1]
return bayer
def dataload(path):
suffix = path[-4:].lower()
if suffix in ['.arw','.dng']:
data = rawpy.imread(path).raw_image_visible
elif suffix in ['.npy']:
data = np.load(path)
elif suffix in ['.jpg', '.png', '.bmp', 'tiff']:
data = cv2.imread(path)
return data
def row_denoise(path, iso, data=None):
if data is None:
raw = dataload(path)
else:
raw = data
raw = bayer2rows(raw)
raw_denoised = raw.copy()
for i in range(len(raw)):
rows = raw[i].mean(axis=1)
rows2 = rows.reshape(1, -1)
rows2 = cv2.bilateralFilter(rows2, 25, sigmaColor=10, sigmaSpace=1+iso/200, borderType=cv2.BORDER_REPLICATE)[0]
row_diff = rows-rows2
raw_denoised[i] = raw[i] - row_diff.reshape(-1, 1)
raw = rows2bayer(raw)
raw_denoised = rows2bayer(raw_denoised)
return raw_denoised
def pth_transfer(src_path='/data/ELD/checkpoints/sid-ours-inc4/model_200_00257600.pt',
dst_path='checkpoints/SonyA7S2_Official.pth',
reverse=False):
model_src = torch.load(src_path, map_location='cpu')
if reverse:
model_dst = torch.load(dst_path, map_location='cpu')
model_src['netG'] = model_dst
save_dir = os.path.join('pth_transfer', os.path.basename(dst_path)[9:-15])
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, os.path.basename(src_path))
torch.save(model_src, save_path)
else:
model_src = model_src['netG']
torch.save(model_src, dst_path)
if __name__ == '__main__':
# pth_transfer('/data/ELD/checkpoints/sid-paired/model_200_00280000.pt', 'checkpoints/SonyA7S2_Paired_Official_last_model')
# names = [name for name in os.listdir('checkpoints') if 'best_model' in name]
# for name in tqdm(names):
# pth_transfer(dst_path=f'checkpoints/{name}', reverse=True)
root_dir = '/data/SonyA7S2/resources-2087'
ds_files = [os.path.join(root_dir, name) for name in os.listdir(root_dir) if name[0] == 'd' and name[-4:]=='.npy']
# bpc_files = [os.path.join(root_dir, name) for name in os.listdir(root_dir) if name[0] == 'b' and name[-4:]=='.npy']
isos = []
legal_iso = np.array([50, 64, 80, 8000, 10000, 12800, 16000, 20000, 25600])
pbar = tqdm(ds_files)
for file in pbar:
iso = int(os.path.basename(file)[16:-4])
isos.append(iso)
# if iso in legal_iso:
pbar.set_description_str(f'ISO-{iso}')
ds_denoised = row_denoise(file,iso)
np.save(file, ds_denoised)
print(sorted(isos))