-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclubGame.py
271 lines (231 loc) · 12.3 KB
/
clubGame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import pygame
import math
from neural_network_agent import ClubAgent
import pathlib
import numpy as np
class Game:
def __init__(self, numHiddenLayers, LRInitial, LRDecay):
#
# parameters
#
self.numHiddenLayers = numHiddenLayers
self.LRInitial = LRInitial
self.LRDecay = LRDecay
self.gameSpeed = 1
self.maxfps = 60
self.printScreen = True
self.playerRad = 24
self.ballRad = 16
self.playerSpeed = 600
self.screenWidth = 1280
self.screenHeight = 720
self.grav = 20
self.entropy = .999
self.playerColor = "white"
self.tetherLen = 256
self.tetherWid = 12
self.reset()
#
# link up DNN to game
#
self.loading = False
self.saveFrequency = 50
episodeLength = 300
self.variables = [self.playerPos[0], self.ballPos[0], self.ballPos[1]]
state_size = 3
self.max_iteration_ep = episodeLength
self.rewardVal = 1
self.rewardThreshhold = 8
self.output_size = 2
self.agent = ClubAgent(state_size, self.output_size, episodeLength, numHiddenLayers, LRInitial, LRDecay)
self.total_steps = 0
self.numEpisodes = 0
self.maxEpisodes = 500
self.numsave = 0
self.averageMemory = []
self.memBuffer = 20
path = "trainingData/"
pathlib.Path(path).mkdir(exist_ok=True)
path = path + str(numHiddenLayers)+" hidden layers/"
pathlib.Path(path).mkdir(exist_ok=True)
path = path + str(LRInitial) + " initial learning rate/"
pathlib.Path(path).mkdir(exist_ok=True)
self.path = path + str(LRDecay) + " learning rate deacay/"
pathlib.Path(self.path).mkdir(exist_ok=True)
#
# OPTIONAL: Load previous weights
#
if self.loading == True:
self.numsave = 2
checkpoint_path = self.path + "checkpoint"+str(self.numsave)
self.numEpisodes = self.numsave * self.saveFrequency
self.agent.model.load_weights(checkpoint_path)
# pick one or the other:
self.agent.disableRandom()
# self.agent.reduceRandom()
else:
self.numsave = 0
#Saving the parameters
with open(self.path+"LOG.txt", "w") as f:
f.write("Num hidden layers = "+str(numHiddenLayers) + "\n")
f.write("Reward = "+str(self.rewardVal) + "\n")
f.write("Reward region = "+str(self.rewardThreshhold) + "\n")
f.write("Output size = "+str(self.output_size) + "\n")
f.write("Input size = "+str(state_size) + "\n")
f.write("learning rate initial = "+str(LRInitial)+ "\n")
f.write("learning rate decay = "+str(LRDecay)+ "\n")
f.write("gamma = "+str(self.agent.gamma)+"\n")
f.write("random chance = "+str(self.agent.exploration_proba)+"\n")
f.write("random decay = "+str(self.agent.exploration_proba_decay)+"\n")
f.write("batch size = "+str(self.agent.batch_size)+"\n")
f.write("choice cutoff = "+str(self.agent.choiceCutoff)+"\n")
# pygame setup
pygame.init()
self.screen = pygame.display.set_mode((self.screenWidth, self.screenHeight))
self.clock = pygame.time.Clock()
self.running = True
self.dt = 0
self.ballSpeed = 0
def reset(self):
self.playerPos = [self.screenWidth/2, self.screenHeight/2]
self.ballPos = [self.playerPos[0] + np.random.uniform(-10,10), self.playerPos[1]-self.tetherLen]
self.prevPos = [self.ballPos[0], self.ballPos[1]]
self.ballVel = [0.0, 0.0]
self.mult = 0
self.agentActions = [0,0,0,0]
self.first = True
self.reward = 0
self.dt = .02
def normalize(self, var):
#[self.playerPos[0], self.ballPos[0], self.ballPos[1]]
ret = [0,0,0]
ret[0] = var[0]/self.screenWidth
ret[1] = var[1]/self.screenWidth
ret[2] = var[2]/self.screenHeight
return ret
def simulation(self): # MAIN FUNCTION
for i in range(self.maxEpisodes): # looping episodes
self.reset()
current_state = 0
self.numEpisodes += 1
for frame in range(self.max_iteration_ep): # game loop
for event in pygame.event.get(): # check if game has been quit
if (event.type ==pygame.QUIT):
self.running = False
pygame.quit()
if self.first == False:
if (self.reward != 0):
self.variables = [self.playerPos[0], self.ballPos[0], self.ballPos[1]]
variables = self.normalize(self.variables)
next_state = np.array([variables])
self.agent.store_episode_reward(current_state, self.agentActions, self.reward, next_state)
self.reward = 0
else:
self.variables = [self.playerPos[0], self.ballPos[0], self.ballPos[1]]
variables = self.normalize(self.variables)
next_state = np.array([variables])
self.agent.store_episode(current_state, self.agentActions, self.reward, next_state)
self.first = False
# decision making
self.variables = [self.playerPos[0], self.ballPos[0], self.ballPos[1]]
variables = self.normalize(self.variables)
current_state = np.array([variables])
if (self.ballPos[1] < (self.playerPos[1] - (self.tetherLen - self.rewardThreshhold))):
self.reward = self.rewardVal
self.agentActions = self.agent.compute_action(current_state)
# controls
moveX = 0
moveY = 0
keys = pygame.key.get_pressed()
if keys[pygame.K_SPACE]:
if self.printScreen == False:
self.printScreen = True
else:
self.printScreen = False
self.screen.fill("black")
# for 4 directional control
# if ((keys[pygame.K_w] or (self.agentActions[0] == 1)) and (self.playerPos[1] > 0)):
# moveY -= 1
# if ((keys[pygame.K_a] or (self.agentActions[1] == 1)) and (self.playerPos[0] > 0)):
# moveX -= 1
# if ((keys[pygame.K_s] or (self.agentActions[2] == 1)) and (self.playerPos[1] < self.screenHeight)):
# moveY += 1
# if ((keys[pygame.K_d] or (self.agentActions[3] == 1)) and (self.playerPos[0] < self.screenWidth)):
# moveX += 1
# for 2 directional control
if ((keys[pygame.K_a] or (self.agentActions[0] == 1)) and (self.playerPos[0] > 0)):
moveX -= 1
if ((keys[pygame.K_d] or (self.agentActions[1] == 1)) and (self.playerPos[0] < self.screenWidth)):
moveX += 1
#player movement vector
vectLen = ((moveX ** 2)+(moveY ** 2)) ** .5
if vectLen != 0:
moveX = float(moveX) / vectLen
moveY = float(moveY) / vectLen
self.playerPos[0] += moveX * self.playerSpeed * self.dt
self.playerPos[1] += moveY * self.playerSpeed * self.dt
#
# ball physics (rigid tether)
#
tetherVect = [self.playerPos[0] - self.ballPos[0], self.playerPos[1] - self.ballPos[1]]
allowedNotNormalized = [tetherVect[1], -tetherVect[0]]
allowedVect = [allowedNotNormalized[0] / self.tetherLen, allowedNotNormalized[1] / self.tetherLen]
#calculate direction ball *wants* to move in
self.ballVel = [self.ballPos[0] - self.prevPos[0], self.ballPos[1] - self.prevPos[1]]
self.ballVel[1] += self.grav
#project the ball's velocity onto the allowed direction
self.mult *= self.entropy
self.mult += (self.ballVel[0] * allowedVect[0] + self.ballVel[1] * allowedVect[1])/(allowedVect[0] ** 2 + allowedVect[1] ** 2)
ballMoveVect = [allowedVect[0]*self.mult, allowedVect[1]*self.mult]
#update ball position
self.prevPos = self.ballPos
self.ballPos[0] += ballMoveVect[0] * self.dt
self.ballPos[1] += ballMoveVect[1] * self.dt
#keep tether same length
dist = math.sqrt((self.playerPos[0] - self.ballPos[0])**2 + (self.playerPos[1] - self.ballPos[1])**2)
if (dist != self.tetherLen):
self.ballPos[0] += (tetherVect[0]/self.tetherLen)*(dist-self.tetherLen)
self.ballPos[1] += (tetherVect[1]/self.tetherLen)*(dist-self.tetherLen)
if self.printScreen == True:
#
# draw the current frame
#
self.screen.fill("black") #overrite previous frame
pygame.draw.circle(self.screen, self.playerColor, (self.playerPos[0], self.playerPos[1]), self.playerRad)
pygame.draw.circle(self.screen, self.playerColor, (self.ballPos[0], self.ballPos[1]), self.ballRad)
pygame.draw.line(self.screen, self.playerColor, (self.ballPos[0], self.ballPos[1]), (self.playerPos[0], self.playerPos[1]), self.tetherWid)
pygame.display.flip() # TODO: figure out what this function
#disable speed scaling for framerates
# self.dt = self.clock.tick(self.maxfps) / 1000 #update dt as the num of seconds since last frame
# self.dt *= self.gameSpeed
# print some stats, for overseeing training
accuracy = float(self.agent.memory_buffer_reward.__len__()) / float((self.agent.memory_buffer_reward.__len__() + self.agent.memory_buffer.__len__()))
accuracy *= 100
if (self.averageMemory.__len__() < self.memBuffer):
self.averageMemory.append(accuracy)
else:
self.averageMemory[self.numEpisodes % self.memBuffer] = accuracy
episodeAvg = float(sum(self.averageMemory)) / float(self.averageMemory.__len__())
with open(self.path+"LOG.txt", "a+") as f:
f.write("accuracy: "+str(round(accuracy, 3))+" in episode "+ str(self.numEpisodes)+" and "+str(round(episodeAvg, 3))+" in last "+ str(self.averageMemory.__len__())+" episodes random prob: "+ str(round(self.agent.getProb() * 100, 3))+"\n")
if (self.agent.getProb() < 0.01):
self.agent.disableRandom()
#Saving the model's weights
if (self.numEpisodes % self.saveFrequency == 0):
self.numsave += 1
checkpoint_path = "./"+self.path+"checkpoint"+str(self.numsave)
self.agent.model.save_weights(checkpoint_path)
with open(self.path+"LOG.txt", "a+") as f:
f.write("Saved! -- checkpoint "+ str(self.numsave)+"\n")
self.agent.train()
self.agent.update_exploration_probability()
def main():
for i in range (3):
numHiddenLayers = i+3
for j in range(6):
LRInitial = 1.5 + (0.5*j)
for k in range(5):
LRDecay = 0.99 - (0.01*k)
game = Game(numHiddenLayers, LRInitial, LRDecay)
game.simulation()
main()