-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
372 lines (258 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from lib.enums import (
AVAILABLE_DEPARTMENTS,
DVF_LOCATION_VARS,
)
from lib.dataset.utils import (
extract_int_from_string,
is_dummy,
get_most_frequent_levels
)
from lib.model.estimator import CustomRegressor
from typing import (
Tuple,
List,
Dict,
Optional,
Union,
)
from pandas.core.frame import DataFrame
from pandas.core.series import Series
import pandas as pd
import numpy as np
from datetime import datetime
from googlemaps.client import Client
from geopy.distance import geodesic
TODAY = datetime.today().strftime("%Y-%m-%d")
def extract_department_code(zip_code: int) -> int:
"""Description. Extract department code from zip code."""
zip_code_str = str(zip_code)
if len(zip_code_str) == 4:
dpt_code = int(zip_code_str[0])
else:
dpt_code = int(zip_code_str[:2])
return dpt_code
def find_department(zip_code: int) -> str:
"""Description. Find department from zip code."""
dpt_code = extract_department_code(zip_code)
if dpt_code in AVAILABLE_DEPARTMENTS.keys():
return AVAILABLE_DEPARTMENTS[dpt_code]
return None
def get_user_location(gmaps: Client, user_args: dict) -> Tuple:
"""Description. Return longitude and latitude of user address.
Args:
gmaps (Client): Google Maps client.
user_args (dict): User arguments.
Returns:
Tuple: Longitude and latitude."""
address = f"{user_args['street_number']} {user_args['street_name']} {user_args['zip_code']} {user_args['city']}"
geocode_result = gmaps.geocode(address)
geocode = geocode_result[0]["geometry"]["location"]
lng, lat = geocode["lng"], geocode["lat"]
return lng, lat
def get_movav_windows(feature_names: List) -> List:
"""Description. Get moving average windows from the names of features used in model."""
mov_av_windows = [
int(extract_int_from_string(feature))
for feature in feature_names
if feature.startswith("l_valeur_fonciere_ma")
]
return mov_av_windows
def get_interval(df: DataFrame, var_name: str, quantiles: Tuple=(.05, .99)) -> Tuple:
lower, upper = quantiles
if lower > upper:
raise ValueError("Lower bound must be lower than upper bound.")
interval = tuple(df[var_name].quantile([lower, upper]).values)
return interval
def get_numeric_filters(df: DataFrame, property_type: str) -> Dict:
"""Description. Get numeric filters for data preprocessing from user arguments.
Args:
df (DataFrame): Dataframe to filter.
property_type (str): Type of property (flats or houses).
Returns:
Dict: Numeric filters to apply on df"""
filters = {}
for var in ("nombre_pieces_principales", "surface_reelle_bati", "valeur_fonciere"):
filters[var] = get_interval(df, var)
if property_type == "houses":
filters["surface_terrain"] = get_interval(df, "surface_terrain")
elif property_type not in ("flats", "houses"):
raise ValueError(f"Invalid property type: {property_type}.")
return filters
def select_features(df: DataFrame, model_loader: Dict) -> DataFrame:
"""Description. Select features used in model and useful features.
Args:
df (DataFrame): Dataframe to select features from.
model_loader (Dict): Model loader with feature names.
Returns:
DataFrame: Dataframe with selected features."""
to_select = ["id_mutation", "date_mutation", "valeur_fonciere", "type_local"]
to_select.extend(DVF_LOCATION_VARS)
to_select.extend(model_loader["feature_names"])
to_select = [var for var in to_select if var in df.columns]
return df.loc[:, to_select]
def fetch_last_trend_prices(df: DataFrame, trend_price_vars: List[str]) -> Dict:
"""Description. Return last trend prices from dataframe using moving averages."""
result = df[trend_price_vars].iloc[-1]
return dict(result)
def return_close_properties(df: DataFrame, user_args: Dict) -> Optional[Union[Series, DataFrame]]:
"""Description. Return properties (flats or houses) close to user's property.
Args:
df (DataFrame): Dataframe with all properties.
user_args (Dict): features of user's property.
Returns:
Optional[Union[Series, DataFrame]]: close properties or None if no properties found."""
mask_street_name = (
df.adresse_nom_voie.str.lower().replace(",", "") ==
user_args["street_name"].lower().replace(",", "")
)
mask = (
(df.adresse_numero == user_args["street_number"]) &
mask_street_name &
(df.code_postal == user_args["zip_code"])
)
result = df[mask]
if len(result) == 0:
mask = (
mask_street_name &
(df.code_postal == user_args["zip_code"])
)
result = df[mask]
if len(result) == 0:
mask = (df.code_postal == user_args["zip_code"])
result = df[mask]
if len(result) == 0:
return None
return result
def calc_distance(x1: Tuple, x2: Tuple, unit: str="m") -> float:
"""Description. Calculate distance between two points.
Args:
x1 (Tuple): Coordinates of first point.
x2 (Tuple): Coordinates of second point.
unit (str, optional): Unit of distance. Defaults to "m".
Returns:
float: Distance between x1 and x2."""
d = geodesic(x1, x2)
if unit == "m":
return d.m
return d
def get_row_with_less_na(df: DataFrame) -> Series:
"""Description. Return row with less missing values."""
return df.loc[df.isna().sum(axis=1) == df.isna().sum(axis=1).min(), :]
def find_closest(df: DataFrame, user_args: Dict) -> Series:
"""Description. Find closest property from user's property.
Args:
df (DataFrame): Dataframe with all properties.
user_args (Dict): features of user's property.
Returns:
Series: Closest property."""
user_coords = (user_args["latitude"], user_args["longitude"])
df["distance"] = df.apply(lambda row: calc_distance(user_coords, (row.latitude, row.longitude)), axis=1)
closest = df.loc[df.distance == df.distance.min(), :]
if isinstance(closest, DataFrame):
closest = get_row_with_less_na(closest)
return closest.iloc[0, :]
def remove_l_prefix(string: str) -> str:
"""Description. Remove 'l_' prefix from string."""
if string.startswith("l_"):
string = string[2:]
return string
def get_imputed_values(df: DataFrame, model_loader: Dict) -> DataFrame:
"""Description. Get imputed values for missing values in dataframe.
Args:
df (DataFrame): Dataframe to impute.
model_loader (Dict): Model loader with feature names to impute.
Returns:
DataFrame: Dataframe with imputed values.
Details:
- If variable is a dummy variable, impute with most frequent level.
- If variable is a continuous variable, impute with median."""
to_impute = []
to_remove = ["id_mutation", "date_mutation", "valeur_fonciere", "type_local"]
to_remove.extend(DVF_LOCATION_VARS)
to_remove = [var for var in to_remove if var in df.columns]
df.drop(columns=to_remove, inplace=True)
imputed_values = {}
for var in df.columns:
x = df[var]
if is_dummy(x):
val = get_most_frequent_levels(df, [var])[var]
else:
val = x.median()
imputed_values[var] = val
return imputed_values
def check_num_rooms(num_rooms: int, var: str) -> float:
"""Description. Return 1 if number of rooms is in variable name, 0 otherwise."""
if str(num_rooms) in var:
return 1.
else:
return 0.
def get_quarter(date: str) -> str:
"""Description. Return quarter from date."""
date = pd.to_datetime(date)
quarter = (date.month - 1) // 3 + 1
return str(quarter)
def get_month(date: str) -> str:
"""Description. Return month from date."""
date = pd.to_datetime(date)
return str(date.month)
def prepare_feature_vector(
df: DataFrame,
model_loader: Dict,
user_args: Dict,
last_trend_prices: Optional[Dict]=None,
closest: Optional[Series]=None
) -> Tuple:
"""Description. Prepare feature vector for prediction.
Args:
df (DataFrame): Dataframe used for data imputation.
model_loader (Dict): Model loader with feature names used for prediction.
user_args (Dict): Features of user's property.
last_trend_prices (Dict): Last trend prices.
closest (Optional[Series], optional): Closest property to user's. Defaults to None.
Returns:
Tuple: Feature vector and selected features."""
selected_features = model_loader["feature_names"]
X = pd.Series(index=selected_features, dtype="float64")
if closest is None or closest.distance > 0:
available_vars = list(df.columns)
imputed_values = get_imputed_values(df, model_loader)
else:
available_vars = list(closest.index)
imputed_values = closest
for var in selected_features:
if var not in available_vars:
X[var] = 0
elif "nombre_pieces_principales" in var:
X[var] = check_num_rooms(user_args["num_rooms"], var)
elif var == "surface_reelle_bati":
X[var] = user_args["surface"]
elif var == "l_surface_reelle_bati":
X[var] = np.log(user_args["surface"])
elif var == "surface_terrain":
X[var] = user_args["field_surface"]
elif var == "l_surface_terrain":
X[var] = np.log(user_args["field_surface"])
elif var == "dependance":
X[var] = user_args["dependance"]
elif last_trend_prices is not None and var in last_trend_prices.keys():
X[var] = last_trend_prices[var]
elif "trimestre" in var:
quarter = get_quarter(TODAY)
X[var] = 1 if quarter in var else 0
elif "mois" in var:
month = get_month(TODAY)
X[var] = 1 if month in var else 0
else:
X[var] = imputed_values[var]
features, X = X.index.tolist(), X.values.reshape(1, -1)
return features, X
def get_predicted_price(model: CustomRegressor, X: np.ndarray) -> float:
"""Description. Predict real estate's price from model.
Args:
- model (CustomRegressor): Model used for prediction.
- X (np.ndarray): Feature vector.
Returns:
float: Predicted price."""
y_pred = model.predict(X)
price_pred = np.round(np.exp(y_pred)[0])
return price_pred