-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
330 lines (278 loc) · 9.53 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#include "ACMSim.h"
#if MACHINE_TYPE == INDUCTION_MACHINE
struct InductionMachineSimulated ACM;
void Machine_init(){
int i;
for(i=0;i<5;++i){
ACM.x[i] = 0.0;
}
ACM.rpm = 0.0;
ACM.rpm_cmd = 0.0;
ACM.rpm_deriv_cmd = 0.0;
ACM.Tload = 0.0;
ACM.Tem = 0.0;
ACM.Lmu = 0.4482;
ACM.Lsigma = 0.0126;
ACM.rreq = 1.69;
ACM.rs = 3.04;
ACM.alpha = ACM.rreq / (ACM.Lmu);
ACM.Lmu_inv= 1.0/ACM.Lmu;
ACM.Js = 0.0636; // Awaya92 using im.omg
ACM.npp = 2;
ACM.mu_m = ACM.npp/ACM.Js;
ACM.Ts = MACHINE_TS;
ACM.ial = 0.0;
ACM.ibe = 0.0;
ACM.ual = 0.0;
ACM.ube = 0.0;
}
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
struct SynchronousMachineSimulated ACM;
void Machine_init(){
int i;
for(i=0;i<5;++i){
ACM.x[i] = 0.0;
}
ACM.rpm = 0.0;
ACM.rpm_cmd = 0.0;
ACM.rpm_deriv_cmd = 0.0;
ACM.Tload = 0.0;
ACM.Tem = 0.0;
ACM.R = 0.45;
ACM.Ld = 4.15*1e-3;
ACM.Lq = 16.74*1e-3;
ACM.KE = 0.504; // Vs/rad
ACM.L0 = 0.5*(ACM.Ld + ACM.Lq);
ACM.L1 = 0.5*(ACM.Ld - ACM.Lq);
ACM.Js = 0.06; // Awaya92 using ACM.omg
ACM.npp = 2;
ACM.mu_m = ACM.npp/ACM.Js;
ACM.Ts = MACHINE_TS;
ACM.id = 0.0;
ACM.iq = 0.0;
ACM.ial = 0.0;
ACM.ibe = 0.0;
ACM.ud = 0.0;
ACM.uq = 0.0;
ACM.ual = 0.0;
ACM.ube = 0.0;
ACM.theta_d = 0.0;
}
#endif
void rK5_dynamics(double t, double *x, double *fx){
#if MACHINE_TYPE == INDUCTION_MACHINE
// electromagnetic model
fx[2] = ACM.rreq*x[0] - ACM.alpha*x[2] - x[4]*x[3]; // flux-alpha
fx[3] = ACM.rreq*x[1] - ACM.alpha*x[3] + x[4]*x[2]; // flux-beta
fx[0] = (ACM.ual - ACM.rs*x[0] - fx[2])/ACM.Lsigma; // current-alpha
fx[1] = (ACM.ube - ACM.rs*x[1] - fx[3])/ACM.Lsigma; // current-beta
// mechanical model
ACM.Tem = ACM.npp*(x[1]*x[2]-x[0]*x[3]);
fx[4] = (ACM.Tem - ACM.Tload)*ACM.mu_m; // elec. angular rotor speed
fx[5] = x[4]; // elec. angular rotor position
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
// electromagnetic model
fx[0] = (ACM.ud - ACM.R * x[0] + x[2]*ACM.Lq*x[1]) / ACM.Ld; // current-d
fx[1] = (ACM.uq - ACM.R * x[1] - x[2]*ACM.Ld*x[0] - x[2]*ACM.KE) / ACM.Lq; // current-q
// mechanical model
ACM.Tem = ACM.npp*(x[1]*ACM.KE + (ACM.Ld - ACM.Lq)*x[0]*x[1]);
fx[2] = (ACM.Tem - ACM.Tload)*ACM.mu_m; // elec. angular rotor speed
fx[3] = x[2]; // elec. angular rotor position
#endif
}
void rK555_Lin(double t, double *x, double hs){
#if MACHINE_TYPE == INDUCTION_MACHINE
#define NUMBER_OF_STATES 6
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
#define NUMBER_OF_STATES 4
#endif
#define NS NUMBER_OF_STATES
double k1[NS], k2[NS], k3[NS], k4[NS], xk[NS];
double fx[NS];
int i;
rK5_dynamics(t, x, fx); // timer.t,
for(i=0;i<NS;++i){
k1[i] = fx[i] * hs;
xk[i] = x[i] + k1[i]*0.5;
}
rK5_dynamics(t, xk, fx); // timer.t+hs/2.,
for(i=0;i<NS;++i){
k2[i] = fx[i] * hs;
xk[i] = x[i] + k2[i]*0.5;
}
rK5_dynamics(t, xk, fx); // timer.t+hs/2.,
for(i=0;i<NS;++i){
k3[i] = fx[i] * hs;
xk[i] = x[i] + k3[i];
}
rK5_dynamics(t, xk, fx); // timer.t+hs,
for(i=0;i<NS;++i){
k4[i] = fx[i] * hs;
x[i] = x[i] + (k1[i] + 2*(k2[i] + k3[i]) + k4[i])/6.0;
}
}
int machine_simulation(){
rK555_Lin(CTRL.timebase, ACM.x, ACM.Ts);
// API for explicit access
#if MACHINE_TYPE == INDUCTION_MACHINE
ACM.ial = ACM.x[0];
ACM.ibe = ACM.x[1];
ACM.psi_al = ACM.x[2];
ACM.psi_be = ACM.x[3];
ACM.rpm = ACM.x[4] * 60 / (2 * M_PI * ACM.npp);
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
ACM.theta_d = ACM.x[3];
if(ACM.theta_d > M_PI){
ACM.theta_d -= 2*M_PI;
}else if(ACM.theta_d < -M_PI){
ACM.theta_d += 2*M_PI; // 反转!
}
ACM.x[3] = ACM.theta_d;
ACM.id = ACM.x[0];
ACM.iq = ACM.x[1];
ACM.ial = MT2A(ACM.id, ACM.iq, cos(ACM.theta_d), sin(ACM.theta_d));
ACM.ibe = MT2B(ACM.id, ACM.iq, cos(ACM.theta_d), sin(ACM.theta_d));
ACM.rpm = ACM.x[2] * 60 / (2 * M_PI * ACM.npp);
#endif
if(isNumber(ACM.rpm)){
return false;
}else{
printf("ACM.rpm is %g\n", ACM.rpm);
return true;
}
}
void measurement(){
US_C(0) = CTRL.ual;
US_C(1) = CTRL.ube;
US_P(0) = US_C(0);
US_P(1) = US_C(1);
#if MACHINE_TYPE == INDUCTION_MACHINE
IS_C(0) = ACM.ial;
IS_C(1) = ACM.ibe;
im.omg = ACM.x[4];
im.theta_r = ACM.x[5];
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
IS_C(0) = ACM.ial;
IS_C(1) = ACM.ibe;
sm.omg = ACM.x[2];
sm.theta_d = ACM.x[3];
sm.theta_r = sm.theta_d;
#endif
}
void inverter_model(){
#if MACHINE_TYPE == INDUCTION_MACHINE
ACM.ual = CTRL.ual;
ACM.ube = CTRL.ube;
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
ACM.ual = CTRL.ual;
ACM.ube = CTRL.ube;
ACM.ud = AB2M(ACM.ual, ACM.ube, cos(ACM.theta_d), sin(ACM.theta_d));
ACM.uq = AB2T(ACM.ual, ACM.ube, cos(ACM.theta_d), sin(ACM.theta_d));
#endif
}
int main(){
printf("NUMBER_OF_LINES: %d\n\n", NUMBER_OF_LINES);
/* Initialization */
Machine_init();
CTRL_init();
acm_init();
ob_init();
FILE *fw;
fw = fopen("algorithm.dat", "w");
write_header_to_file(fw);
/* MAIN LOOP */
clock_t begin, end;
begin = clock();
int _; // _ for the outer iteration
int dfe=0; // dfe for down frequency execution
for(_=0;_<NUMBER_OF_LINES;++_){
/* Command and Load Torque */
// ACM.Tload = 0;
cmd_fast_speed_reversal(CTRL.timebase, 5, 5, 1500); // timebase, instant, interval, rpm_cmd
// if(CTRL.timebase>10){
// ACM.rpm_cmd = -250;
// }else if(CTRL.timebase>5){
// ACM.Tload = 5;
// }else{
// ACM.rpm_cmd = -50;
// ACM.Tload = 1;
// }
/* Simulated ACM */
if(machine_simulation()){
printf("Break the loop.\n");
break;
}
if(++dfe==DOWN_FREQ_EXE){
dfe = 0;
/* Time */
CTRL.timebase += TS;
measurement();
observation();
write_data_to_file(fw);
control(ACM.rpm_cmd, 0);
}
inverter_model();
}
end = clock(); printf("The simulation in C costs %g sec.\n", (double)(end - begin)/CLOCKS_PER_SEC);
fclose(fw);
/* Fade out */
system("python ./ACMPlot.py");
// getch();
// system("pause");
// system("exit");
return 0;
}
/* Utility */
void write_header_to_file(FILE *fw){
#if MACHINE_TYPE == INDUCTION_MACHINE
// no space is allowed!
// fprintf(fw, "x0,x1,x2,x3,rpm,uMs_cmd,uTs_cmd,iMs_cmd,iMs,iTs_cmd,iTs,psi_mu_al,tajima_rpm\n");
// fprintf(fw, "$x_0$,$x_1$,$x_2$,$x_3$,Speed [rpm],$u_{Ms}^*$,$u_{Ts}^*$,$i_{Ms}^*$,$i_{Ms}$,$i_{Ts}^*$,$i_{Ts}$,$\\psi_{\\alpha\\mu}$,tajima_rpm\n");
fprintf(fw, "ACM.x[0],ACM.x[1],ACM.x[2],ACM.x[3],ACM.Tem,CTRL.uMs_cmd,CTRL.uTs_cmd,CTRL.iMs_cmd,CTRL.iMs,CTRL.iTs_cmd,CTRL.iTs,ob.psi_mu_al,ob.tajima.omg*RAD_PER_SEC_2_RPM,ACM.rpm\n");
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
// no space is allowed!
fprintf(fw, "x0,x1,x2,x3,uMs_cmd,uTs_cmd,iMs_cmd,iMs,iTs_cmd,iTs\n");
#endif
{
FILE *fw2;
fw2 = fopen("info.dat", "w");
fprintf(fw2, "TS,DOWN_SAMPLE\n");
fprintf(fw2, "%g, %d\n", TS, DOWN_SAMPLE);
fclose(fw2);
}
}
void write_data_to_file(FILE *fw){
static int bool_animate_on = false;
static int j=0,jj=0; // j,jj for down sampling
// if(CTRL.timebase>20)
{
if(++j == DOWN_SAMPLE)
{
j=0;
#if MACHINE_TYPE == INDUCTION_MACHINE
// 数目必须对上,否则ACMAnimate会失效,但是不会影响ACMPlot
fprintf(fw, "%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",
ACM.x[0], ACM.x[1], ACM.x[2], ACM.x[3], ACM.Tem,
CTRL.uMs_cmd, CTRL.uTs_cmd, CTRL.iMs_cmd, CTRL.iMs, CTRL.iTs_cmd, CTRL.iTs,
ob.psi_mu_al, ob.tajima.omg*RAD_PER_SEC_2_RPM, ACM.rpm
);
#elif MACHINE_TYPE == SYNCHRONOUS_MACHINE
fprintf(fw, "%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",
ACM.x[0], ACM.x[1], ACM.x[2], ACM.x[3],
CTRL.uMs_cmd, CTRL.uTs_cmd, CTRL.iMs_cmd, CTRL.iMs, CTRL.iTs_cmd, CTRL.iTs
);
#endif
}
}
// if(bool_animate_on==false){
// bool_animate_on = true;
// printf("Start ACMAnimate\n");
// system("start python ./ACMAnimate.py");
// }
}
int isNumber(double x){
// This looks like it should always be true,
// but it's false if x is a NaN (1.#QNAN0).
return (x == x);
// see https://www.johndcook.com/blog/IEEE_exceptions_in_cpp/ cb: https://stackoverflow.com/questions/347920/what-do-1-inf00-1-ind00-and-1-ind-mean
}