-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDetectron2_COCO_DataSegmentation_from_Marine_checkpoints.py
133 lines (101 loc) · 3.41 KB
/
Detectron2_COCO_DataSegmentation_from_Marine_checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
First, Import all variables
"""
import detectron2
from detectron2.data import DatasetCatalog, MetadataCatalog
import matplotlib.pyplot as plt
import random
import os
import cv2
#from detectron2.engine import DefaultTrainer
from detectron2.utils.visualizer import Visualizer
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import ColorMode
'''
# download, decompress the data in Colab where much faster
!wget https://cbpetro.s3.us-east-2.amazonaws.com/api/download/data.zip
!unzip data.zip > /dev/null
'''
import wget
'''
Download the data.zip file only once and then comment out the following 7 lines
'''
# url = 'https://cbpetro.s3.us-east-2.amazonaws.com/api/download/data.zip'
# wget.download(url, './data.zip')
# from zipfile import ZipFile
# zf = ZipFile('./data.zip', 'r')
# zf.extractall('./')
# zf.close()
'''
Register coco instance
'''
from detectron2.data.datasets import register_coco_instances
register_coco_instances("nautical_ecp", {}, "./data/trainval.json", "./data/images")
nautical_metadata = MetadataCatalog.get("nautical_ecp")
dataset_dicts = DatasetCatalog.get("nautical_ecp")
'''
Get ready to read models
'''
cfg = get_cfg()
cfg.MODEL.DEVICE = "cpu"
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml"))
#cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.DATASETS.TRAIN = ("nautical_ecp",)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 5
'''
Load Weights
'''
cfg.OUTPUT_DIR = "./output"
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model
cfg.DATASETS.TEST = ("nautical_ecp", )
predictor = DefaultPredictor(cfg)
'''
Random images from training set
'''
for d in random.sample(dataset_dicts, 1):
im = cv2.imread(d["file_name"])
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=nautical_metadata,
scale=0.8,
#instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.imshow(v.get_image()[:, :, ::-1])
plt.show()
'''
Random images from boats set not used in training
'''
for i in range(2,29,1):
nautical_img_no = str(i)
img = os.path.join("./data_val/images-" +nautical_img_no + ".jpeg") #1-24 in boats
print(img)
im = cv2.imread(img)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=nautical_metadata,
scale=0.8,
#instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
#cv2_imshow(v.get_image()[:, :, ::-1])
plt.imshow(v.get_image()[:, :, ::-1])
plt.show()
'''
This is how you load and predict discrete images
'''
im = cv2.imread("./data_val/images-28.jpeg")
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=nautical_metadata,
scale=0.8,
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.imshow(v.get_image()[:, :, ::-1])
plt.show()