forked from iphysresearch/GWData-Bootcamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_prep_bbh.py
540 lines (458 loc) · 19.1 KB
/
data_prep_bbh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
from __future__ import division
import lal
import lalsimulation
from lal.antenna import AntennaResponse
from lal import MSUN_SI, C_SI, G_SI
import os
import sys
import argparse
import time
import numpy as np
from six.moves import cPickle
from scipy.signal import filtfilt, butter
from scipy.optimize import brentq
from scipy import integrate, interpolate
if sys.version_info >= (3, 0):
xrange = range
safe = 2 # define the safe multiplication scale for the desired time length
class bbhparams:
def __init__(self,mc,M,eta,m1,m2,ra,dec,iota,phi,psi,idx,fmin,snr,SNR):
self.mc = mc
self.M = M
self.eta = eta
self.m1 = m1
self.m2 = m2
self.ra = ra
self.dec = dec
self.iota = iota
self.phi = phi
self.psi = psi
self.idx = idx
self.fmin = fmin
self.snr = snr
self.SNR = SNR
def tukey(M,alpha=0.5):
"""
Tukey window code copied from scipy
"""
n = np.arange(0, M)
width = int(np.floor(alpha*(M-1)/2.0))
n1 = n[0:width+1]
n2 = n[width+1:M-width-1]
n3 = n[M-width-1:]
w1 = 0.5 * (1 + np.cos(np.pi * (-1 + 2.0*n1/alpha/(M-1))))
w2 = np.ones(n2.shape)
w3 = 0.5 * (1 + np.cos(np.pi * (-2.0/alpha + 1 + 2.0*n3/alpha/(M-1))))
w = np.concatenate((w1, w2, w3))
return np.array(w[:M])
def parser():
"""Parses command line arguments"""
parser = argparse.ArgumentParser(prog='data_prep.py',description='generates GW data for application of deep learning networks.')
# arguments for reading in a data file
parser.add_argument('-N', '--Nsamp', type=int, default=7000, help='the number of samples')
#parser.add_argument('-Nv', '--Nvalid', type=int, default=1500, help='the number of validation samples')
#parser.add_argument('-Nt', '--Ntest', type=int, default=1500, help='the number of testing samples')
parser.add_argument('-Nn', '--Nnoise', type=int, default=25, help='the number of noise realisations per signal')
parser.add_argument('-Nb', '--Nblock', type=int, default=10000, help='the number of training samples per output file')
parser.add_argument('-f', '--fsample', type=int, default=8192, help='the sampling frequency (Hz)')
parser.add_argument('-T', '--Tobs', type=int, default=1, help='the observation duration (sec)')
parser.add_argument('-s', '--snr', type=float, default=None, help='the signal integrated SNR')
parser.add_argument('-I', '--detectors', type=str, nargs='+',default=['H1','L1'], help='the detectors to use')
parser.add_argument('-b', '--basename', type=str,default='test', help='output file path and basename')
parser.add_argument('-m', '--mdist', type=str, default='astro', help='mass distribution for training (astro,gh,metric)')
parser.add_argument('-z', '--seed', type=int, default=1, help='the random seed')
return parser.parse_args()
def convert_beta(beta,fs,T_obs):
"""
Converts beta values (fractions defining a desired period of time in
central output window) into indices for the full safe time window
"""
# pick new random max amplitude sample location - within beta fractions
# and slide waveform to that location
newbeta = np.array([(beta[0] + 0.5*safe - 0.5),(beta[1] + 0.5*safe - 0.5)])/safe
low_idx = int(T_obs*fs*newbeta[0])
high_idx = int(T_obs*fs*newbeta[1])
return low_idx,high_idx
def gen_noise(fs,T_obs,psd):
"""
Generates noise from a psd
"""
N = T_obs * fs # the total number of time samples
Nf = N // 2 + 1
dt = 1 / fs # the sampling time (sec)
df = 1 / T_obs
amp = np.sqrt(0.25*T_obs*psd)
idx = np.argwhere(psd==0.0)
amp[idx] = 0.0
re = amp*np.random.normal(0,1,Nf)
im = amp*np.random.normal(0,1,Nf)
re[0] = 0.0
im[0] = 0.0
x = N*np.fft.irfft(re + 1j*im)*df
return x
def gen_psd(fs,T_obs,op='AdvDesign',det='H1'):
"""
generates noise for a variety of different detectors
"""
N = T_obs * fs # the total number of time samples
dt = 1 / fs # the sampling time (sec)
df = 1 / T_obs # the frequency resolution
psd = lal.CreateREAL8FrequencySeries(None, lal.LIGOTimeGPS(0), 0.0, df,lal.HertzUnit, N // 2 + 1)
if det=='H1' or det=='L1':
if op == 'AdvDesign':
lalsimulation.SimNoisePSDAdVDesignSensitivityP1200087(psd, 10.0)
elif op == 'AdvEarlyLow':
lalsimulation.SimNoisePSDAdVEarlyLowSensitivityP1200087(psd, 10.0)
elif op == 'AdvEarlyHigh':
lalsimulation.SimNoisePSDAdVEarlyHighSensitivityP1200087(psd, 10.0)
elif op == 'AdvMidLow':
lalsimulation.SimNoisePSDAdVMidLowSensitivityP1200087(psd, 10.0)
elif op == 'AdvMidHigh':
lalsimulation.SimNoisePSDAdVMidHighSensitivityP1200087(psd, 10.0)
elif op == 'AdvLateLow':
lalsimulation.SimNoisePSDAdVLateLowSensitivityP1200087(psd, 10.0)
elif op == 'AdvLateHigh':
lalsimulation.SimNoisePSDAdVLateHighSensitivityP1200087(psd, 10.0)
else:
print('unknown noise option')
exit(1)
else:
print('unknown detector - will add Virgo soon')
exit(1)
return psd
def get_snr(data,T_obs,fs,psd,fmin):
"""
computes the snr of a signal given a PSD starting from a particular frequency index
"""
N = T_obs*fs
df = 1.0/T_obs
dt = 1.0/fs
fidx = int(fmin/df)
win = tukey(N,alpha=1.0/8.0)
idx = np.argwhere(psd>0.0)
invpsd = np.zeros(psd.size)
invpsd[idx] = 1.0/psd[idx]
xf = np.fft.rfft(data*win)*dt
SNRsq = 4.0*np.sum((np.abs(xf[fidx:])**2)*invpsd[fidx:])*df
return np.sqrt(SNRsq)
def whiten_data(data,duration,sample_rate,psd,flag='td'):
"""
Takes an input timeseries and whitens it according to a psd
"""
if flag=='td':
# FT the input timeseries - window first
win = tukey(duration*sample_rate,alpha=1.0/8.0)
xf = np.fft.rfft(win*data)
else:
xf = data
# deal with undefined PDS bins and normalise
idx = np.argwhere(psd>0.0)
invpsd = np.zeros(psd.size)
invpsd[idx] = 1.0/psd[idx]
xf *= np.sqrt(2.0*invpsd/sample_rate)
# Detrend the data: no DC component.
xf[0] = 0.0
if flag=='td':
# Return to time domain.
x = np.fft.irfft(xf)
return x
else:
return xf
def gen_masses(m_min=5.0,M_max=100.0,mdist='astro',verbose=True):
"""
function returns a pair of masses drawn from the appropriate distribution
"""
flag = False
if mdist=='astro':
if verbose:
print('{}: using astrophysical logarithmic mass distribution'.format(time.asctime()))
new_m_min = m_min
new_M_max = M_max
log_m_max = np.log(new_M_max - new_m_min)
while not flag:
m12 = np.exp(np.log(new_m_min) + np.random.uniform(0,1,2)*(log_m_max-np.log(new_m_min)))
flag = True if (np.sum(m12)<new_M_max) and (np.all(m12>new_m_min)) and (m12[0]>=m12[1]) else False
eta = m12[0]*m12[1]/(m12[0]+m12[1])**2
mc = np.sum(m12)*eta**(3.0/5.0)
return m12, mc, eta
elif mdist=='gh':
if verbose:
print('{}: using George & Huerta mass distribution'.format(time.asctime()))
m12 = np.zeros(2)
while not flag:
q = np.random.uniform(1.0,10.0,1)
m12[1] = np.random.uniform(5.0,75.0,1)
m12[0] = m12[1]*q
flag = True if (np.all(m12<75.0)) and (np.all(m12>5.0)) and (m12[0]>=m12[1]) else False
eta = m12[0]*m12[1]/(m12[0]+m12[1])**2
mc = np.sum(m12)*eta**(3.0/5.0)
return m12, mc, eta
elif mdist=='metric':
if verbose:
print('{}: using metric based mass distribution'.format(time.asctime()))
new_m_min = m_min
new_M_max = M_max
new_M_min = 2.0*new_m_min
eta_min = m_min*(new_M_max-new_m_min)/new_M_max**2
while not flag:
M = (new_M_min**(-7.0/3.0) - np.random.uniform(0,1,1)*(new_M_min**(-7.0/3.0) - new_M_max**(-7.0/3.0)))**(-3.0/7.0)
eta = (eta_min**(-2.0) - np.random.uniform(0,1,1)*(eta_min**(-2.0) - 16.0))**(-1.0/2.0)
m12 = np.zeros(2)
m12[0] = 0.5*M + M*np.sqrt(0.25-eta)
m12[1] = M - m12[0]
flag = True if (np.sum(m12)<new_M_max) and (np.all(m12>new_m_min)) and (m12[0]>=m12[1]) else False
mc = np.sum(m12)*eta**(3.0/5.0)
return m12, mc, eta
else:
print('{}: ERROR, unknown mass distribution. Exiting.'.format(time.asctime()))
exit(1)
def get_fmin(M,eta,dt,verbose):
"""
Compute the instantaneous frequency given a time till merger
"""
M_SI = M*MSUN_SI
def dtchirp(f):
"""
The chirp time to 2nd PN order
"""
v = ((G_SI/C_SI**3)*M_SI*np.pi*f)**(1.0/3.0)
temp = (v**(-8.0) + ((743.0/252.0) + 11.0*eta/3.0)*v**(-6.0) -
(32*np.pi/5.0)*v**(-5.0) + ((3058673.0/508032.0) + 5429*eta/504.0 +
(617.0/72.0)*eta**2)*v**(-4.0))
return (5.0/(256.0*eta))*(G_SI/C_SI**3)*M_SI*temp - dt
# solve for the frequency between limits
fmin = brentq(dtchirp, 1.0, 2000.0, xtol=1e-6)
if verbose:
print('{}: signal enters segment at {} Hz'.format(time.asctime(),fmin))
return fmin
def gen_par(fs,T_obs,mdist='astro',beta=[0.75,0.95],verbose=True):
"""
Generates a random set of parameters
"""
# define distribution params
m_min = 5.0 # rest frame component masses
M_max = 100.0 # rest frame total mass
log_m_max = np.log(M_max - m_min)
m12, mc, eta = gen_masses(m_min,M_max,mdist=mdist,verbose=verbose)
M = np.sum(m12)
if verbose:
print('{}: selected bbh masses = {},{} (chirp mass = {})'.format(time.asctime(),m12[0],m12[1],mc))
# generate iota
iota = np.arccos(-1.0 + 2.0*np.random.rand())
if verbose:
print('{}: selected bbh cos(inclination) = {}'.format(time.asctime(),np.cos(iota)))
# generate polarisation angle
psi = 2.0*np.pi*np.random.rand()
if verbose:
print('{}: selected bbh polarisation = {}'.format(time.asctime(),psi))
# generate reference phase
phi = 2.0*np.pi*np.random.rand()
if verbose:
print('{}: selected bbh reference phase = {}'.format(time.asctime(),phi))
# pick sky position - uniform on the 2-sphere
ra = 2.0*np.pi*np.random.rand()
dec = np.arcsin(-1.0 + 2.0*np.random.rand())
if verbose:
print('{}: selected bbh sky position = {},{}'.format(time.asctime(),ra,dec))
# pick new random max amplitude sample location - within beta fractions
# and slide waveform to that location
low_idx,high_idx = convert_beta(beta,fs,T_obs)
if low_idx==high_idx:
idx = low_idx
else:
idx = int(np.random.randint(low_idx,high_idx,1)[0])
if verbose:
print('{}: selected bbh peak amplitude time = {}'.format(time.asctime(),idx/fs))
# the start index of the central region
sidx = int(0.5*fs*T_obs*(safe-1.0)/safe)
# compute SNR of pre-whitened data
fmin = get_fmin(M,eta,int(idx-sidx)/fs,verbose)
if verbose:
print('{}: computed starting frequency = {} Hz'.format(time.asctime(),fmin))
# store params
par = bbhparams(mc,M,eta,m12[0],m12[1],ra,dec,np.cos(iota),phi,psi,idx,fmin,None,None)
return par
def gen_bbh(fs,T_obs,psds,snr=1.0,dets=['H1'],beta=[0.75,0.95],par=None,verbose=True):
"""
generates a BBH timedomain signal
"""
N = T_obs * fs # the total number of time samples
dt = 1 / fs # the sampling time (sec)
f_low = 12.0 # lowest frequency of waveform (Hz)
amplitude_order = 0
phase_order = 7
approximant = lalsimulation.IMRPhenomD
dist = 1e6*lal.PC_SI # put it as 1 MPc
# make waveform
# loop until we have a long enough waveform - slowly reduce flow as needed
flag = False
while not flag:
hp, hc = lalsimulation.SimInspiralChooseTDWaveform(
par.m1 * lal.MSUN_SI, par.m2 * lal.MSUN_SI,
0, 0, 0, 0, 0, 0,
dist,
par.iota, par.phi, 0,
0, 0,
1 / fs,
f_low,f_low,
lal.CreateDict(),
approximant)
flag = True if hp.data.length>2*N else False
f_low -= 1 # decrease by 1 Hz each time
orig_hp = hp.data.data
orig_hc = hc.data.data
# compute reference idx
ref_idx = np.argmax(orig_hp**2 + orig_hc**2)
# the start index of the central region
sidx = int(0.5*fs*T_obs*(safe-1.0)/safe)
# make aggressive window to cut out signal in central region
# window is non-flat for 1/8 of desired Tobs
# the window has dropped to 50% at the Tobs boundaries
win = np.zeros(N)
tempwin = tukey(int((16.0/15.0)*N/safe),alpha=1.0/8.0)
win[int((N-tempwin.size)/2):int((N-tempwin.size)/2)+tempwin.size] = tempwin
# loop over detectors
ndet = len(psds)
ts = np.zeros((ndet,N))
hp = np.zeros((ndet,N))
hc = np.zeros((ndet,N))
intsnr = []
j = 0
for det,psd in zip(dets,psds):
# make signal - apply antenna and shifts
ht_shift, hp_shift, hc_shift = make_bbh(orig_hp,orig_hc,fs,par.ra,par.dec,par.psi,det,verbose)
# place signal into timeseries - including shift
ht_temp = ht_shift[int(ref_idx-par.idx):]
hp_temp = hp_shift[int(ref_idx-par.idx):]
hc_temp = hc_shift[int(ref_idx-par.idx):]
if len(ht_temp)<N:
ts[j,:len(ht_temp)] = ht_temp
hp[j,:len(ht_temp)] = hp_temp
hc[j,:len(ht_temp)] = hc_temp
else:
ts[j,:] = ht_temp[:N]
hp[j,:] = hp_temp[:N]
hc[j,:] = hc_temp[:N]
# apply aggressive window to cut out signal in central region
# window is non-flat for 1/8 of desired Tobs
# the window has dropped to 50% at the Tobs boundaries
ts[j,:] *= win
hp[j,:] *= win
hc[j,:] *= win
# compute SNR of pre-whitened data
intsnr.append(get_snr(ts[j,:],T_obs,fs,psd.data.data,par.fmin))
# normalise the waveform using either integrated or peak SNR
intsnr = np.array(intsnr)
scale = snr/np.sqrt(np.sum(intsnr**2))
ts *= scale
hp *= scale
hc *= scale
intsnr *= scale
if verbose:
print('{}: computed the network SNR = {}'.format(time.asctime(),snr))
return ts, hp, hc
def make_bbh(hp,hc,fs,ra,dec,psi,det,verbose):
"""
turns hplus and hcross into a detector output
applies antenna response and
and applies correct time delays to each detector
"""
# make basic time vector
tvec = np.arange(len(hp))/float(fs)
# compute antenna response and apply
resp = AntennaResponse(det, ra, dec, psi,scalar=True, vector=True, times=0.0)
Fp = resp.plus
Fc = resp.cross
ht = hp*Fp + hc*Fc # overwrite the timeseries vector to reuse it
# compute time delays relative to Earth centre
frDetector = lalsimulation.DetectorPrefixToLALDetector(det)
tdelay = lal.TimeDelayFromEarthCenter(frDetector.location,ra,dec,0.0)
if verbose:
print('{}: computed {} Earth centre time delay = {}'.format(time.asctime(),det,tdelay))
# interpolate to get time shifted signal
ht_tck = interpolate.splrep(tvec, ht, s=0)
hp_tck = interpolate.splrep(tvec, hp, s=0)
hc_tck = interpolate.splrep(tvec, hc, s=0)
tnew = tvec + tdelay
new_ht = interpolate.splev(tnew, ht_tck, der=0,ext=1)
new_hp = interpolate.splev(tnew, hp_tck, der=0,ext=1)
new_hc = interpolate.splev(tnew, hc_tck, der=0,ext=1)
return new_ht, new_hp, new_hc
def sim_data(fs,T_obs,snr=1.0,dets=['H1'],Nnoise=25,size=1000,mdist='astro',beta=[0.75,0.95], verbose=True):
"""
Simulates all of the test, validation and training data timeseries
"""
yval = [] # initialise the param output
ts = [] # initialise the timeseries output
par = [] # initialise the parameter output
nclass = 2 # the hardcoded number of classes
npclass = int(size/float(nclass))
ndet = len(dets) # the number of detectors
psds = [gen_psd(fs,T_obs,op='AdvDesign',det=d) for d in dets]
# for the noise class
for x in xrange(npclass):
if verbose:
print('{}: making a noise only instance'.format(time.asctime()))
ts_new = np.array([gen_noise(fs,T_obs,psd.data.data) for psd in psds]).reshape(ndet,-1)
ts.append(np.array([whiten_data(t,T_obs,fs,psd.data.data) for t,psd in zip(ts_new,psds)]).reshape(ndet,-1))
par.append(None)
yval.append(0)
if verbose:
print('{}: completed {}/{} noise samples'.format(time.asctime(),x+1,npclass))
# for the signal class - loop over random masses
cnt = npclass
while cnt < size:
# generate a single new timeseries and chirpmass
par_new = gen_par(fs,T_obs,mdist=mdist,beta=beta,verbose=verbose)
ts_new,_,_ = gen_bbh(fs,T_obs,psds,snr=snr,dets=dets,beta=beta,par=par_new,verbose=verbose)
# loop over noise realisations
for j in xrange(Nnoise):
ts_noise = np.array([gen_noise(fs,T_obs,psd.data.data) for psd in psds]).reshape(ndet,-1)
ts.append(np.array([whiten_data(t,T_obs,fs,psd.data.data) for t,psd in zip(ts_noise+ts_new,psds)]).reshape(ndet,-1))
par.append(par_new)
yval.append(1)
cnt += 1
if verbose:
print('{}: completed {}/{} signal samples'.format(time.asctime(),cnt-npclass,int(size/2)))
# trim the data down to desired length
ts = np.array(ts)[:size]
yval = np.array(yval)[:size]
par = par[:size]
# return randomised the data
idx = np.random.permutation(size)
temp = [par[i] for i in idx]
return [ts[idx], yval[idx]], temp
# the main part of the code
def main():
"""
The main code - generates the training, validation and test samples
"""
snr_mn = 0.0
snr_cnt = 0
# get the command line args
args = parser()
if args.seed>0:
np.random.seed(args.seed)
safeTobs = safe*args.Tobs
# break up the generation into blocks of args.Nblock training samples
nblock = int(np.ceil(float(args.Nsamp)/float(args.Nblock)))
for i in xrange(nblock):
# simulate the dataset and randomise it
# only use Nnoise for the training data NOT the validation and test
print('{}: starting to generate data'.format(time.asctime()))
ts, par = sim_data(args.fsample,safeTobs,args.snr,args.detectors,args.Nnoise,size=args.Nblock,mdist=args.mdist,beta=[0.75,0.95])
print('{}: completed generating data {}/{}'.format(time.asctime(),i+1,nblock))
# pickle the results
# save the timeseries data to file
f = open(args.basename + '_ts_' + str(i) + '.sav', 'wb')
cPickle.dump(ts, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
print('{}: saved timeseries data to file'.format(time.asctime()))
# save the sample parameters to file
f = open(args.basename + '_params_' + str(i) + '.sav', 'wb')
cPickle.dump(par, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
print('{}: saved parameter data to file'.format(time.asctime()))
print('{}: success'.format(time.asctime()))
if __name__ == "__main__":
exit(main())