-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathprepare_model.py
73 lines (54 loc) · 2.42 KB
/
prepare_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
This file contains logic responsible for teaching model on a processed dataset. It prints it's accuracy.
Based on Paul van Gent's code from blog post: http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opencv-and-a-face-dataset/
"""
import glob
import random
import numpy as np
import cv2
from image_commons import load_image
fishface = cv2.face.FisherFaceRecognizer_create()
training_set_size = 0.95
def get_files(emotion):
"""
gets paths to all images of given emotion and splits them into two sets: trainging and test
:param emotion: name of emotion to find images for
"""
files = glob.glob("data/sorted_set/%s/*" % emotion)
random.shuffle(files)
training = files[:int(len(files) * training_set_size)]
prediction = files[-int(len(files) * (1 - training_set_size)):]
return training, prediction
def make_sets():
"""
method used to create datasets for all emotions. It loads both images and its labels to memory into training and test labels
"""
training_data = []
training_labels = []
prediction_data = []
prediction_labels = []
for emotion in emotions:
training, prediction = get_files(emotion)
for item in training:
training_data.append(load_image(item))
training_labels.append(emotions.index(emotion))
for item in prediction:
prediction_data.append(load_image(item))
prediction_labels.append(emotions.index(emotion))
return training_data, training_labels, prediction_data, prediction_labels
def run_recognizer():
"""
method is creating datasets using make_sets method, then it trains a model and tet with a test set. It returns correct guesses to test data count ratio
"""
training_data, training_labels, prediction_data, prediction_labels = make_sets()
print("size of training set is:", len(training_labels), "images")
fishface.train(training_data, np.asarray(training_labels))
print("predicting classification set")
correct = sum(1 for id, image in enumerate(prediction_data) if fishface.predict(image)[0] == prediction_labels[id])
return ((100 * correct) / len(prediction_data))
if __name__ == '__main__':
emotions = ["neutral", "anger", "disgust", "happy", "sadness", "surprise"]
for i in range(0, 1):
correct = run_recognizer()
print("got", correct, "percent correct!")
fishface.save('models/emotion_detection_model.xml')