-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathapp_vc.py
393 lines (363 loc) · 19.3 KB
/
app_vc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import gradio as gr
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch, str2bool
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np
from pydub import AudioSegment
import argparse
# Load model and configuration
fp16 = False
device = None
def load_models(args):
global sr, hop_length, fp16
fp16 = args.fp16
print(f"Using device: {device}")
print(f"Using fp16: {fp16}")
if args.checkpoint_path is None or args.checkpoint_path == "":
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
else:
dit_checkpoint_path = args.checkpoint_path
dit_config_path = args.config_path
config = yaml.safe_load(open(dit_config_path, "r"))
model_params = recursive_munch(config["model_params"])
model_params.dit_type = 'DiT'
model = build_model(model_params, stage="DiT")
hop_length = config["preprocess_params"]["spect_params"]["hop_length"]
sr = config["preprocess_params"]["sr"]
# Load checkpoints
model, _, _, _ = load_checkpoint(
model,
None,
dit_checkpoint_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load additional modules
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf(
"funasr/campplus", "campplus_cn_common.bin", config_filename=None
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
vocoder_type = model_params.vocoder.type
if vocoder_type == 'bigvgan':
from modules.bigvgan import bigvgan
bigvgan_name = model_params.vocoder.name
bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
vocoder_fn = bigvgan_model
elif vocoder_type == 'hifigan':
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None)
hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu'))
hift_gen.eval()
hift_gen.to(device)
vocoder_fn = hift_gen
elif vocoder_type == "vocos":
vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r'))
vocos_path = model_params.vocoder.vocos.path
vocos_model_params = recursive_munch(vocos_config['model_params'])
vocos = build_model(vocos_model_params, stage='mel_vocos')
vocos_checkpoint_path = vocos_path
vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
_ = [vocos[key].eval().to(device) for key in vocos]
_ = [vocos[key].to(device) for key in vocos]
total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys())
print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M")
vocoder_fn = vocos.decoder
else:
raise ValueError(f"Unknown vocoder type: {vocoder_type}")
speech_tokenizer_type = model_params.speech_tokenizer.type
if speech_tokenizer_type == 'whisper':
# whisper
from transformers import AutoFeatureExtractor, WhisperModel
whisper_name = model_params.speech_tokenizer.name
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
def semantic_fn(waves_16k):
ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = whisper_model.encoder(
ori_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
return S_ori
elif speech_tokenizer_type == 'cnhubert':
from transformers import (
Wav2Vec2FeatureExtractor,
HubertModel,
)
hubert_model_name = config['model_params']['speech_tokenizer']['name']
hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name)
hubert_model = HubertModel.from_pretrained(hubert_model_name)
hubert_model = hubert_model.to(device)
hubert_model = hubert_model.eval()
hubert_model = hubert_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = hubert_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
elif speech_tokenizer_type == 'xlsr':
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
)
model_name = config['model_params']['speech_tokenizer']['name']
output_layer = config['model_params']['speech_tokenizer']['output_layer']
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer]
wav2vec_model = wav2vec_model.to(device)
wav2vec_model = wav2vec_model.eval()
wav2vec_model = wav2vec_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = wav2vec_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
else:
raise ValueError(f"Unknown speech tokenizer type: {speech_tokenizer_type}")
# Generate mel spectrograms
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": config['preprocess_params']['spect_params'].get('fmin', 0),
"fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
return (
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
)
def crossfade(chunk1, chunk2, overlap):
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
bitrate = "320k"
model, semantic_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args = None, None, None, None, None, None
overlap_wave_len = None
max_context_window = None
sr = None
hop_length = None
overlap_frame_len = 16
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate):
inference_module = model
mel_fn = to_mel
# Load audio
source_audio = librosa.load(source, sr=sr)[0]
ref_audio = librosa.load(target, sr=sr)[0]
# Process audio
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
# Resample
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
# if source audio less than 30 seconds, whisper can handle in one forward
if converted_waves_16k.size(-1) <= 16000 * 30:
S_alt = semantic_fn(converted_waves_16k)
else:
overlapping_time = 5 # 5 seconds
S_alt_list = []
buffer = None
traversed_time = 0
while traversed_time < converted_waves_16k.size(-1):
if buffer is None: # first chunk
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
else:
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
S_alt = semantic_fn(chunk)
if traversed_time == 0:
S_alt_list.append(S_alt)
else:
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
buffer = chunk[:, -16000 * overlapping_time:]
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
S_alt = torch.cat(S_alt_list, dim=1)
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
S_ori = semantic_fn(ori_waves_16k)
mel = mel_fn(source_audio.to(device).float())
mel2 = mel_fn(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
F0_ori = None
F0_alt = None
shifted_f0_alt = None
# Length regulation
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
max_source_window = max_context_window - mel2.size(2)
# split source condition (cond) into chunks
processed_frames = 0
generated_wave_chunks = []
# generate chunk by chunk and stream the output
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
with torch.autocast(device_type=device.type, dtype=torch.float16 if fp16 else torch.float32):
# Voice Conversion
vc_target = inference_module.cfm.inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, mel2.size(-1):]
vc_wave = vocoder_fn(vc_target.float())[0]
if vc_wave.ndim == 1:
vc_wave = vc_wave.unsqueeze(0)
if processed_frames == 0:
if is_last_chunk:
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
break
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, None
elif is_last_chunk:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
break
else:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, None
def main(args):
global model, semantic_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args
global overlap_wave_len, max_context_window, sr, hop_length
model, semantic_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args = load_models(args)
# streaming and chunk processing related params
max_context_window = sr // hop_length * 30
overlap_wave_len = overlap_frame_len * hop_length
description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
"无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
inputs = [
gr.Audio(type="filepath", label="Source Audio / 源音频"),
gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
]
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
]
outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')]
gr.Interface(fn=voice_conversion,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion",
examples=examples,
cache_examples=False,
).launch(share=args.share,)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint-path", type=str, help="Path to the checkpoint file", default=None)
parser.add_argument("--config-path", type=str, help="Path to the config file", default=None)
parser.add_argument("--share", type=str2bool, nargs="?", const=True, default=False, help="Whether to share the app")
parser.add_argument("--fp16", type=str2bool, nargs="?", const=True, help="Whether to use fp16", default=True)
parser.add_argument("--gpu", type=int, help="Which GPU id to use", default=0)
args = parser.parse_args()
cuda_target = f"cuda:{args.gpu}" if args.gpu else "cuda"
device = torch.device(cuda_target if torch.cuda.is_available() else "cpu")
main(args)