diff --git a/pytorch_ssim/__init__.py b/pytorch_ssim/__init__.py index 738e803..1e558e0 100644 --- a/pytorch_ssim/__init__.py +++ b/pytorch_ssim/__init__.py @@ -5,31 +5,31 @@ from math import exp def gaussian(window_size, sigma): - gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) - return gauss/gauss.sum() + gauss = torch.exp(-(torch.arange(window_size) - window_size // 2)**2 / (2.0 * sigma**2)) + return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) - window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) + window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() return window -def _ssim(img1, img2, window, window_size, channel, size_average = True): - mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel) - mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel) +def _ssim(img1, img2, window, window_size, channel, size_average=True): + mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) + mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) - mu1_mu2 = mu1*mu2 + mu1_mu2 = mu1 * mu2 - sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq - sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq - sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2 + sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq + sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq + sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 - C1 = 0.01**2 - C2 = 0.03**2 + C1 = (0.01 * 255)**2 + C2 = (0.03 * 255)**2 - ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2)) + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() @@ -37,37 +37,28 @@ def _ssim(img1, img2, window, window_size, channel, size_average = True): return ssim_map.mean(1).mean(1).mean(1) class SSIM(torch.nn.Module): - def __init__(self, window_size = 11, size_average = True): + def __init__(self, window_size=11, size_average=True): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 - self.window = create_window(window_size, self.channel) + self.register_buffer('window', create_window(window_size, self.channel)) def forward(self, img1, img2): (_, channel, _, _) = img1.size() - if channel == self.channel and self.window.data.type() == img1.data.type(): + if channel == self.channel and self.window.type() == img1.type(): window = self.window else: window = create_window(self.window_size, channel) - - if img1.is_cuda: - window = window.cuda(img1.get_device()) - window = window.type_as(img1) - + window = window.to(img1.device).type_as(img1) self.window = window self.channel = channel - return _ssim(img1, img2, window, self.window_size, channel, self.size_average) -def ssim(img1, img2, window_size = 11, size_average = True): +def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.size() window = create_window(window_size, channel) - - if img1.is_cuda: - window = window.cuda(img1.get_device()) - window = window.type_as(img1) - + window = window.to(img1.device).type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average)