-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrepeated.m
141 lines (106 loc) · 3.5 KB
/
repeated.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
defaults
nruns=10;
totfiring = zeros(nruns, 4);
totactive = zeros(nruns, 4);
coract = zeros(nruns, 9);
%CUTOFF=5; % Hz
npatterns=1;
ndays = 4;
brweights = zeros(ndays, npyrs*nbranches, nruns);
nrnweights = zeros(ndays, npyrs, nruns);
branch_syns = zeros(ndays, npyrs*nbranches, nruns);
brsynratio= zeros(ndays, nruns);
for run=1:nruns
for ncase=1:ndays
sfn=sprintf('./data/%s_%d_%d/spikesperpattern.dat', CONDITION, ncase, run-1);
spk = load( sfn);
spk = spk(1, 1:npyrs)/(stimduration/1000);
%pop = spk(spk>=CUTOFF);
pop = spk(spk>=CUTOFF);
totfiring(run, ncase) = mean(spk, 2);
totactive(run, ncase) = sum(spk>CUTOFF,2)/npyrs;
ff = sprintf('./data/%s_%d_%d/synstate.dat', CONDITION, ncase, run-1);
ss = load(ff);
for i=1:size(ss,1)
bid=ss(i,2);
nid=ss(i,3);
srcid=ss(i,5);
bstrength = ss(i,6);
w=ss(i,7);
if (srcid ==0 && bid <= npyrs*nbranches)
brweights( ncase, bid+1, run) = brweights(ncase, bid+1, run) + w;
brstrengths(ncase, bid+1)=bstrength;
nrnweights( ncase, nid+1,run) = nrnweights(ncase, nid+1,run) + w;
end
if (srcid ==0 && bid <= npyrs*nbranches && w > 0.7)
branch_syns(ncase, bid+1, run) = branch_syns(ncase, bid+1, run)+1;
end
end
brsynratio(ncase,run) = sum(branch_syns(ncase,:, run)>3)/(nbranches*npyrs);
end
end
close all
mf = mean(totfiring,1);
sf = std(totfiring,0,1)/sqrt(nruns);
mact = mean(totactive,1);
sact = std(totactive,0,1)/sqrt(nruns);
barwitherr(100.* sact(1,:,1), 100.* mact(1,:,1));
title('% coding neurons')
%ylabel('% Active neurons')
xlabel('Day')
ylim([0,80]);
export_fig(sprintf('./figs/%s_pops.pdf',CONDITION), '-transparent')
figure
barwitherr(sf(1,:,1), mf(1,:,1));
title('Average firing rate [Hz]')
%ylabel('Avg firing rate [Hz]')
%xlabel('Number of trainings')
%ylim([0,70]);
export_fig(sprintf('./figs/%s_rates.pdf',CONDITION), '-transparent')
figure
hs=hist(branch_syns(1, :), [0:8]);
bar(hs(:,2:end)/sum(hs(:)))
title('1st day')
ylim([0,0.2]);
export_fig(sprintf('./figs/%s_brsyns_1day.pdf',CONDITION), '-transparent')
figure
hs=hist(branch_syns(4, :), [0:8]);
bar(hs(:,2:end)/sum(hs(:)))
ylim([0,0.2]);
title('4th day')
export_fig(sprintf('./figs/%s_brsyns_4day.pdf',CONDITION), '-transparent')
figure
barwitherr(100.0*std(brsynratio,0,2)/sqrt(nruns), 100.0*mean(brsynratio,2))
title('Branches with >2 potentiated synapses')
ylabel('Percentage')
xlabel('Day')
ylim([0,16]);
export_fig(sprintf('./figs/%s_brsyns.pdf',CONDITION), '-transparent')
figure
aa = mean(branch_syns(:,:)');
ss = std(branch_syns(:,:)');
errorbar(ss, aa, 'o')
title('Potentiated synapses per branch');
ylabel('Number of synapses')
xlabel('Day')
ylim([0,6]);
export_fig(sprintf('./figs/%s_syn_per_branch.pdf',CONDITION), '-transparent')
figure
tweights = (squeeze(sum(nrnweights,2)));
barwitherr(std(tweights,0,2), mean(tweights,2))
%barwitherr(100.0*std(brsynratio,0,2)/sqrt(nruns), 100.0*mean(brsynratio,2))
title('Total Syn Weights')
ylabel('Total Syn Weight')
xlabel('Day')
ylim([0,12000]);
export_fig(sprintf('./figs/%s_tweights.pdf',CONDITION), '-transparent')
CONDITION
b1 = branch_syns(1,:);
b1 = b1(b1>0);
b4 = branch_syns(4,:);
b4 = b4(b4>0);
mean(b1)
std(b1)
mean(b4)
std(b4)
[h,p] = ttest2(b1, b4)