-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpos_function.py
149 lines (117 loc) · 5.1 KB
/
pos_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from nltk import pos_tag,word_tokenize
import json
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score,classification_report
from keras.layers import Embedding,Dense,Flatten,concatenate,Input
from keras.models import Model
class Embed:
def __init__(self,vocab_size,embed_dim,pos_output_dim,max_len,pos_trainable_param):
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.pos_output_dim=pos_output_dim
self.pos_input_dim = 20
self.max_len = max_len
self.char_to_int = {}
self.int_to_char ={}
self.pos_trainable_param = pos_trainable_param
def embed_sentences(self,word_index,model,trainable_param,X_train_pad):
embedding_matrix = np.zeros((self.vocab_size,self.embed_dim))
for word, i in word_index.items():
try:
embedding_vector = model[word]
except:
pass
try:
if embedding_vector is not None:
embedding_matrix[i]=embedding_vector
except:
pass
embed_layer = Embedding(self.vocab_size,self.embed_dim,weights =[embedding_matrix],trainable=trainable_param)
input_seq = Input(shape=(X_train_pad.shape[1],))
embed_seq = embed_layer(input_seq)
return input_seq,embed_seq
def tag_pos1(self,sentences):
pos_tagged_sent = []
pos_tagged_sent_all = []
for sent in sentences:
pos_tagged_sent.extend(pos_tag(sent))
pos_tagged_sent_all.append(pos_tag(sent))
tags = list(set([i[1] for i in pos_tagged_sent]))
self.pos_input_dim = len(tags)
self.char_to_int = dict((c, i) for i, c in enumerate(tags))
self.int_to_char = dict((i, c) for i, c in enumerate(tags))
X_pos_encoded =[]
for i in range(len(pos_tagged_sent_all)):
temp = [self.char_to_int[pos[1]] for pos in pos_tagged_sent_all[i]]
X_pos_encoded.append(temp)
return np.array(X_pos_encoded)
def embed_pos(self,X_pos_arr):
input_seq_pos = Input(shape=(X_pos_arr.shape[1],))
embed_seq_pos = Embedding(self.pos_output_dim,self.pos_input_dim,input_length=self.max_len, dropout=0.2,trainable=self.pos_trainable_param)(input_seq_pos)
return input_seq_pos,embed_seq_pos
'''
def tag_pos(self,sentences,train_flag):
if train_flag == True:
pos_tagged_sent= []
for sent in sentences:
temp = pos_tag(sent)
pos_tagged_sent.append(temp)
X_pos=[]
for i in range(len(pos_tagged_sent)):
temp_p=[]
for item_pair in pos_tagged_sent[i]:
_,p = item_pair
temp_p.append(p)
X_pos.append(temp_p)
tags=[]
tags_sl =[]
for j in range(len(pos_tagged_sent)):
for i in range(len(pos_tagged_sent[j])):
_,temp = pos_tagged_sent[j][i]
tags_sl.append((temp))
tags.append(tags_sl)
all_tags = set(tags[0])
self.pos_input_dim = len(set(tags[0]))
self.char_to_int = dict((c, i) for i, c in enumerate(all_tags))
self.int_to_char = dict((i, c) for i, c in enumerate(all_tags))
X_pos_encoded =[]
for i in range(len(X_pos)):
temp = [self.char_to_int[pos] for pos in X_pos[i]]
X_pos_encoded.append(temp)
X_pos_arr = np.array(X_pos_encoded)
else:
pos_tagged_sent= []
for sent in sentences:
temp = pos_tag(sent)
pos_tagged_sent.append(temp)
X_pos=[]
for i in range(len(pos_tagged_sent)):
temp_p=[]
for item_pair in pos_tagged_sent[i]:
_,p = item_pair
temp_p.append(p)
X_pos.append(temp_p)
X_pos_encoded =[]
for i in range(len(X_pos)):
temp = [self.char_to_int[pos] for pos in X_pos[i]]
X_pos_encoded.append(temp)
X_pos_arr = np.array(X_pos_encoded)
return X_pos_arr
'''
def model_build(input_seq,input_seq_pos,embed_seq,embed_seq_pos,pad_train_x,X_pos_arr,train_y,
epochs,batch_size,pad_test_x,X_pos_test_arr,test_y):
print()
x = concatenate([embed_seq, embed_seq_pos])
x = Dense(256,activation ="relu")(x)
x = Flatten()(x)
preds = Dense(1,activation="sigmoid")(x)
model = Model(inputs=[input_seq, input_seq_pos], outputs=preds)
model.compile(loss="binary_crossentropy",optimizer="adam",metrics=["accuracy"])
model.fit([pad_train_x, X_pos_arr], train_y, epochs=epochs,batch_size=batch_size,
validation_data=([pad_test_x, X_pos_test_arr], test_y))
predictions = model.predict([pad_test_x, X_pos_test_arr])
predictions = [0 if i<0.5 else 1 for i in predictions]
print("Accuracy: ",accuracy_score(test_y,predictions))
print("Classification Report: ",classification_report(test_y,predictions))
return model