-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_text.py
40 lines (33 loc) · 1.1 KB
/
generate_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from nanoGPT import GPTLanguageModel, decode
import sys
import argparse
def main(model_path, max_new_tokens):
# Load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = GPTLanguageModel()
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
# Generate text
context = torch.zeros((1, 1), dtype=torch.long, device=device)
generated_tokens = model.generate(context, max_new_tokens=max_new_tokens)[
0
].tolist()
generated_text = decode(generated_tokens)
print(generated_text)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate text using a BigramLanguageModel."
)
parser.add_argument(
"--model_path", type=str, required=True, help="Path to the trained model file."
)
parser.add_argument(
"--tokens", type=int, required=True, help="Number of tokens to generate."
)
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
main(args.model_path, args.tokens)