-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanoGPT.py
230 lines (191 loc) · 7.49 KB
/
nanoGPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# FINAL VERSION OF THE nanoGPT MODEL
# Scaled up version of the bigram model with multi-head self-attention and feedforward layers
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
batch_size = 64 # how many independet sequences we will process in parallel
block_size = 256 # what is the maximum context length of the predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
torch.manual_seed(1337)
with open("input.txt", "r", encoding="utf-8") as f:
text = f.read()
# unique characters that occur in the dataset
chars = sorted(list(set(text)))
vocab_size = len(chars)
# creating mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [
stoi[c] for c in s
] # encoder: takes a string, output a list of integers
decode = lambda l: "".join(
[itos[i] for i in l]
) # decoder: takes a list of integers, outputs a string
# train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
"""one head of self attention"""
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x) # B, T, C
q = self.query(x) # B, T, C
# compute attention scores ("affinities")
wei = (
q @ k.transpose(-2, -1) * C**-0.5
) # (B, T, C) @ (B, 16, C) ----> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B, T, C)
out = wei @ v # (B, T, T) @ (B, T, C) --> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
"""multiple heads of self-attention in parallel"""
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.proj(out)
return out
class FeedForward(nn.Module):
"""a simple linear layer followed by a non linearity"""
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(
4 * n_embd, n_embd
), # projection layer going back to the residual pathway
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""Transformer block: communication followed by computation"""
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
# residual connection for optimization
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(
self.ln2(x)
) # computation is done in feedforward on all the tokens independently
return x
# super simple bigram model
class GPTLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(
*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
)
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B, T) tensors of integers
token_emb = self.token_embedding_table(idx) # B,T,C
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # T, C
x = token_emb + pos_emb
x = self.blocks(x)
logits = self.lm_head(x) # B, T, vocab_size
if targets is None:
loss = None
else:
B, T, C = logits.shape
targets = targets.view(B * T)
loss = F.cross_entropy(logits.view(B * T, C), targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B,T) array of indices in the current context
for _ in range(max_new_tokens):
# crop the idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=1) # B,C
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # B,1
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # B, T+1
return idx
if __name__ == "__main__":
model = GPTLanguageModel()
m = model.to(device)
print(sum(p.numel() for p in m.parameters()) / 1e6, "M parameters")
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
# every once in while evaluate loss on train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
# sample a batch of data
xb, yb = get_batch("train")
# evaluate the loss
logits, loss = m(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# save model
torch.save(m.state_dict(), "nanogpt.pth")
# generate from model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))