-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
418 lines (353 loc) · 13.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import argparse
import json
import os
import random
import re
import fasttext
import numpy as np
import torch
from comet import download_model, load_from_checkpoint
from comet.models.base import CometModel
from datasets import load_dataset
from fasttext.FastText import _FastText
from iso639 import languages
from rouge_score import rouge_scorer
from scipy.stats import bootstrap
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from sonar.models.blaser.loader import load_blaser_model
from torch.nn.functional import cosine_similarity
from tqdm import tqdm
from dataloading import CrossSumAggregated
from models.aux_models import SONARTextEncoder
WHITESPACE_HANDLER = lambda k: re.sub("\s+", " ", re.sub("\n+", " ", k.strip()))
def compute_rouge(
refs: list[str],
preds: list[str],
lang: str,
) -> dict[str, list[float]]:
rouge = rouge_scorer.RougeScorer(
["rouge1", "rouge2", "rougeL"], use_stemmer=False, lang=lang
)
rouge_scores = [rouge.score(r, p) for r, p in zip(refs, preds)]
rouge_scores = {
metric: [score[metric].fmeasure for score in rouge_scores]
for metric in rouge_scores[0]
}
return rouge_scores
@torch.inference_mode()
def compute_sonar_similarities(
texts_a: list[str],
texts_b: list[str],
langs_a: list[str],
langs_b: list[str],
sentence_encoder: SONARTextEncoder,
blaser: torch.nn.Module,
) -> tuple[torch.Tensor, torch.Tensor]:
embs_a = sentence_encoder.predict(texts_a, source_langs=langs_a, batch_size=64)
embs_b = sentence_encoder.predict(texts_b, source_langs=langs_b, batch_size=64)
cos_sim = cosine_similarity(embs_a, embs_b)
blaser.eval()
blaser_score = blaser(src=embs_a, mt=embs_b).squeeze()
return cos_sim, blaser_score
@torch.inference_mode()
def compute_comet(
src: list[str],
mt: list[str],
comet: CometModel,
batch_size: int = 8,
device: torch.device = torch.device("cuda:0"),
):
data = [
{
"src": src_i,
"mt": mt_i,
}
for src_i, mt_i in zip(src, mt)
]
device = comet.device
device_id = int(str(device).split(":")[-1])
outputs = comet.predict(data, batch_size=batch_size, devices=[device_id])
comet = comet.to(device)
return outputs.scores # type: ignore
def compute_ref_metrics(
refs: list[str],
preds: list[str],
lang: str,
sentence_encoder: SONARTextEncoder,
blaser: torch.nn.Module,
) -> dict[str, list[float]]:
outputs = compute_rouge(refs, preds, lang)
sonar_cos_sim, blaser_score = compute_sonar_similarities(
refs, preds, [lang] * len(refs), [lang] * len(preds), sentence_encoder, blaser
)
outputs["sonar_cos_sim"] = sonar_cos_sim.cpu().numpy().tolist()
outputs["blaser"] = blaser_score.cpu().numpy().tolist()
return outputs
@torch.inference_mode()
def compute_consistency_metrics(
preds: list[list[str]],
langs: list[list[str]],
sentence_encoder: SONARTextEncoder,
blaser: torch.nn.Module,
comet: CometModel,
ref_lang: str | None = None,
) -> dict[str, dict[str, list[float]]]:
blaser.eval()
preds_flat = [p for ps in preds for p in ps]
langs_flat = [l for ls in langs for l in ls]
embs = sentence_encoder.predict(preds_flat, source_langs=langs_flat, batch_size=64)
outputs = {}
if ref_lang is None: # metrics are computed vs all languages and then averaged
i = 0
for cluster, langs_cluster in zip(preds, langs):
if len(cluster) == 1:
continue
embs_cluster = embs[i : i + len(cluster)]
for l in langs_cluster:
if l not in outputs:
outputs[l] = {"blaser": [], "comet": [], "sonar_cos_sim": []}
sonar_cos_sim = cosine_similarity(
embs_cluster.unsqueeze(2), embs_cluster.T.unsqueeze(0)
)
for j, l in enumerate(langs_cluster):
embs_j = embs_cluster[j].unsqueeze(0).expand(len(cluster) - 1, -1)
embs_other = torch.cat(
[
embs_cluster[k].unsqueeze(0)
for k in range(len(cluster))
if k != j
]
)
blaser_scores_j = blaser(src=embs_other, mt=embs_j).squeeze()
outputs[l]["blaser"].append(blaser_scores_j.mean().item())
outputs[l]["sonar_cos_sim"].append(sonar_cos_sim[j].mean().item())
i += len(cluster)
preds_flat, langs_flat = None, None
langs_unique = outputs.keys()
for l in langs_unique:
refs4comet = []
mt4comet = []
cluster_lens = []
for cluster, langs_cluster in zip(preds, langs):
if len(cluster) == 1:
continue
try:
i = langs_cluster.index(l)
except:
continue
cluster_lens.append(len(cluster))
refs4comet += [cluster[j] for j in range(len(cluster)) if j != i]
mt4comet += [cluster[i] for _ in range(len(langs_cluster) - 1)]
comet_scores = compute_comet(refs4comet, mt4comet, comet)
for n in cluster_lens:
outputs[l]["comet"].append(np.mean(comet_scores[: n - 1]))
comet_scores = comet_scores[n - 1 :]
else: # metrics are computed vs a reference language
i = 0
for cluster, langs_cluster in zip(preds, langs):
if ref_lang not in langs_cluster or len(cluster) == 1:
continue
embs_cluster = embs[i : i + len(cluster)]
emb_ref = embs_cluster[langs_cluster.index(ref_lang)].unsqueeze(0)
for l in langs_cluster:
if l not in outputs:
outputs[l] = {"blaser": [], "comet": [], "sonar_cos_sim": []}
sonar_cos_sim = cosine_similarity(
embs_cluster.unsqueeze(2), emb_ref.T.unsqueeze(0)
).squeeze()
blaser_scores = blaser(
src=emb_ref.expand(len(embs_cluster), -1), mt=embs_cluster
).squeeze()
for j, l in enumerate(langs_cluster):
outputs[l]["blaser"].append(blaser_scores[j].item())
outputs[l]["sonar_cos_sim"].append(sonar_cos_sim[j].item())
i += len(cluster)
preds_flat, langs_flat = None, None
langs_unique = outputs.keys()
for l in langs_unique:
refs4comet = []
mt4comet = []
cluster_lens = []
for cluster, langs_cluster in zip(preds, langs):
if len(cluster) == 1:
continue
try:
l_idx = langs_cluster.index(l)
ref_idx = langs_cluster.index(ref_lang)
except:
continue
cluster_lens.append(len(cluster))
refs4comet.append(cluster[ref_idx])
mt4comet.append(cluster[l_idx])
outputs[l]["comet"] = compute_comet(refs4comet, mt4comet, comet)
return outputs
def compute_target_lang_accuracy(
preds: list[str],
langs: list[str],
fasttext_model: _FastText,
) -> dict[str, float]:
predicted_langs = fasttext_model.predict(
[p.replace("\n", " ") for p in preds], k=1
)[
0
] # k=1 means we only want the top prediction
pred_lang_codes = [pl[0][9:] for pl in predicted_langs]
pred_lang_names = []
for lc in pred_lang_codes:
try:
pred_lang_names.append(languages.get(alpha2=lc).name.lower())
except:
pred_lang_names.append("unknown")
total, num_correct = {}, {}
for i, (l_gt, l_pred) in enumerate(zip(langs, pred_lang_names)):
total[l_gt] = 1 + total.get(l_gt, 0)
if l_gt.startswith(l_pred):
num_correct[l_gt] = 1 + num_correct.get(l_gt, 0)
acc = {l: num_correct[l] / total[l] for l in total}
return acc
def build_confidence_interval(results: list[float]) -> dict[str, float]:
results = np.array(results) # type: ignore
mean = np.mean(results)
ci = bootstrap(
(results,),
np.mean,
axis=0,
n_resamples=1000,
confidence_level=0.95,
alternative="two-sided",
method="basic",
).confidence_interval
ci_amplitude_ub = np.maximum(ci.high - mean, mean - ci.low)
return {"mean": mean, "ci": ci_amplitude_ub} # type: ignore
def cleanup_text(text: str) -> str:
try:
text = re.sub(r"<extra_id_\d+>", "", text)
text = text.strip()
except:
text = ""
return text
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--predictions", type=str, required=True)
parser.add_argument("--source_lang", type=str, required=True)
parser.add_argument(
"--ground_truth",
type=str,
default="/mnt/PBANAS01/Resources.Lib/Corpora/Text/summarization/CrossSum_v1.0/modified/aggregated_paper",
)
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--split", type=str, default="test")
parser.add_argument("--output", type=str, default="results.json")
parser.add_argument("--cluster_size", type=int, default=None)
parser.add_argument("--seed", type=int, default=42)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
device = torch.device(args.device)
if not args.source_lang.startswith("zh"):
source_language_name = languages.get(alpha2=args.source_lang).name.lower()
else:
source_language_name = "chinese_simplified"
# if args.source_lang.endswith == "Hans":
# source_language_name += "_simplified"
# elif args.source_lang.endswith == "Hant":
# source_language_name += "_traditional"
sentence_encoder = SONARTextEncoder(
encoder="text_sonar_basic_encoder",
tokenizer="text_sonar_basic_encoder",
device=device,
).eval()
blaser = load_blaser_model("blaser_2_0_qe").to(device).eval()
comet_path = download_model("Unbabel/wmt22-cometkiwi-da")
comet = load_from_checkpoint(comet_path)
comet = comet.to(device)
fasttext_model = fasttext.load_model("lid.176.bin")
dataset = CrossSumAggregated(
os.path.join(args.ground_truth, args.split),
source_language=source_language_name,
)
with open(args.predictions, "r") as fd:
preds = [json.loads(line) for line in fd.readlines()]
if args.cluster_size is not None:
dataset = [x for x in dataset if x["num_docs"] == args.cluster_size]
preds = [
x
for x in preds
if len([k for k in x if k.startswith("summary_")]) == args.cluster_size
]
all_refs, all_preds = {}, {}
for target, pred in zip(dataset, preds): # type: ignore
source_index = target["source_index"]
source_url = target[f"url{source_index}"]
assert (
source_url == pred["source_url"]
), f"Mismatched URLs: {source_url} vs {pred['source_url']}"
langs = [target[key] for key in target if key.startswith("lang")]
for l in langs:
if l not in all_refs:
all_refs[l] = []
all_preds[l] = []
ref_summary = cleanup_text(target[f"summary{langs.index(l)}"])
if f"summary_{l}" in pred:
pred_summary = cleanup_text(pred[f"summary_{l}"])
else:
pred_summary = ""
all_refs[l].append(ref_summary)
all_preds[l].append(pred_summary)
results_ref_metrics = {}
for l in all_refs:
results_ref_metrics[l] = compute_ref_metrics(
all_refs[l], all_preds[l], l, sentence_encoder, blaser
)
all_refs, all_preds = None, None
cluster_preds, cluster_langs = [], []
for pred in preds:
keys = [k for k in pred if k.startswith("summary_")]
cluster_preds.append([cleanup_text(pred[k]) for k in keys])
cluster_langs.append([k.split("_", 1)[-1] for k in keys])
results_cons_all_metrics = compute_consistency_metrics(
cluster_preds, cluster_langs, sentence_encoder, blaser, comet
)
results_cons_source_metrics = compute_consistency_metrics(
cluster_preds,
cluster_langs,
sentence_encoder,
blaser,
comet,
ref_lang=source_language_name,
)
results_tgt_lang_acc = compute_target_lang_accuracy(
[p for ps in cluster_preds for p in ps],
[l for ls in cluster_langs for l in ls],
fasttext_model,
)
results = {}
for l in results_ref_metrics:
results[l] = {
f"{m}_ref": build_confidence_interval(results_ref_metrics[l][m])
for m in results_ref_metrics[l]
}
for l in results_cons_all_metrics:
results[l].update(
{
f"{m}_cons_all": build_confidence_interval(
results_cons_all_metrics[l][m]
)
for m in results_cons_all_metrics[l]
}
)
for l in results_cons_source_metrics:
results[l].update(
{
f"{m}_cons_source": build_confidence_interval(
results_cons_source_metrics[l][m]
)
for m in results_cons_source_metrics[l]
}
)
for l in results_tgt_lang_acc:
results[l].update({"target_lang_acc": results_tgt_lang_acc[l]})
with open(args.output, "w") as fd:
fd.write(json.dumps(results, indent=4))
if __name__ == "__main__":
main()