-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun-summarizer.py
108 lines (96 loc) · 4.97 KB
/
run-summarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from transformers import AutoTokenizer
from dataset import SummDataMod
from models import Summarizer
def main():
parser = argparse.ArgumentParser(
description='Text summarization with BART.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = Trainer.add_argparse_args(parser)
parser.add_argument('-d', '--data_path', default='./data/cnndm',
type=str, metavar='', help='data directory path')
parser.add_argument('-o', '--output', default='./checkpoints',
type=str, metavar='', help='checkpoint save dir')
parser.add_argument('--dataset', default='cnndm',
type=str, metavar='', help='name of the dataset (cnndm / xsum)')
parser.add_argument('--model_name_or_path', default='facebook/bart-large',
type=str, metavar='', help='path to pretrained model or model identifier from huggingface.co/models')
parser.add_argument('--tokenizer_name', default=None,
type=str, metavar='', help='path to tokenizer if not the same as model_name')
parser.add_argument('--config_name', default=None,
type=str, metavar='', help='path to config if not the same as model_name')
parser.add_argument('--learning_rate', default=5e-5,
type=float, metavar='', help='learning rate')
parser.add_argument('--batch_size', default=4,
type=int, metavar='', help='batch size')
parser.add_argument('--checkpoint', default=None,
type=str, metavar='', help='checkpoint file')
parser.add_argument('--num_beams', default=1,
type=int, metavar='', help='number of beams for beam search')
parser.add_argument('--num_beam_groups', default=1,
type=int, metavar='', help='number of groups for diverse beam search')
parser.add_argument('--num_return_sequences', default=1,
type=int, metavar='', help='number of returned sequences for each input sequence')
parser.add_argument('--diversity_penalty', default=0.,
type=float, metavar='', help='diversity penalty for diverse beam search')
parser.add_argument('--predict_split', default='test',
type=str, metavar='', help='data split to generate predictions for')
parser.add_argument('--predictions_file', default='./predictions.jsonl',
type=str, metavar='', help='output predictions file (.jsonl)')
parser.add_argument('--do_train', dest='do_train', action='store_true')
parser.add_argument('--do_eval', dest='do_eval', action='store_true')
parser.add_argument('--do_predict', dest='do_predict', action='store_true')
parser.add_argument('--seed', default=33,
type=int, metavar='', help='random seed')
args = parser.parse_args()
if args.seed > 0:
seed_everything(args.seed)
tokenizer_name = args.tokenizer_name if args.tokenizer_name is not None else args.model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False)
model = Summarizer(
args.model_name_or_path,
tokenizer=tokenizer,
config_name=args.config_name,
learning_rate=args.learning_rate,
batch_size=args.batch_size,
accumulate_grad_batches=args.accumulate_grad_batches,
num_beams=args.num_beams,
num_beam_groups=args.num_beam_groups,
diversity_penalty=args.diversity_penalty,
num_return_sequences=args.num_return_sequences,
predictions_file=args.predictions_file,
)
datamodule = SummDataMod(
args.data_path,
model.model,
tokenizer,
dataset=args.dataset,
batch_size=args.batch_size,
predict_split=args.predict_split,
)
checkpoint = args.checkpoint
if args.do_train:
checkpoint_callback = ModelCheckpoint(
monitor='val_loss_epoch',
dirpath=args.output,
filename="bart-summarizer-{epoch:02d}-{val_loss:.2f}",
save_top_k=3,
mode="min",
)
lr_monitor = LearningRateMonitor(logging_interval='step')
trainer = Trainer.from_argparse_args(args, callbacks=[checkpoint_callback, lr_monitor])
trainer.fit(model, datamodule=datamodule)
checkpoint = checkpoint_callback.best_model_path
if args.do_eval:
if checkpoint is not None:
model = Summarizer.load_from_checkpoint(checkpoint)
trainer = Trainer.from_argparse_args(args)
trainer.test(model, datamodule=datamodule)
if args.do_predict:
if checkpoint is not None:
model = Summarizer.load_from_checkpoint(checkpoint)
trainer = Trainer.from_argparse_args(args)
trainer.predict(model, datamodule=datamodule)
if __name__ == '__main__':
main()