Skip to content

Latest commit

 

History

History
201 lines (151 loc) · 5.06 KB

README.md

File metadata and controls

201 lines (151 loc) · 5.06 KB

py2proto

py2proto is a powerful Python library that simplifies the process of creating gRPC services and Protocol Buffer definitions. It automatically generates .proto files, gRPC code, and Swagger UI documentation from Python class definitions.

Features

  • Automatic generation of .proto files from Python classes
  • Generation of gRPC Python code
  • Swagger UI generation for easy API testing and documentation
  • Support for complex data types (lists, dictionaries)
  • Custom output directory setting
  • Built-in Swagger UI server
  • Creating server and client codes for Python and JavaScript programming languages.

Installation

Install py2proto using pip:

pip install py2proto

Usage

  1. Import necessary modules:
from py2proto import ProtoGenerator, relation
from typing import List, Dict
  1. Define your message classes:
class MessageProto(ProtoGenerator):
    class MessageRequest(ProtoGenerator):
        message: str
        number: int

    class MessageResponse(ProtoGenerator):
        message: str

    # relation(`relation Name`, `request function`, `returnes fucntion`)
    service = relation("SendMessage", "MessageRequest", "MessageResponse")
  1. Generate files and run Swagger UI:
if __name__ == "__main__":
    # Set output directory
    MessageProto.set_output_directory("outputs")
    
    # Generate proto file
    proto_file = MessageProto.generate_proto("messageservice", "message_service")
    
    # Generate pb2 files
    MessageProto.generate_pb2(proto_file)
    
    # Generate Swagger file
    swagger_file = MessageProto.generate_swagger(proto_file)
    
    # Generate gRPC server & client files for Python and JavaScript
    MessageProto.generate_grpc_files(['python', 'javascript'], proto_file, port=50051)
    
    # Run Swagger UI
    MessageProto.run_flask()

This script will generate a .proto file in the 'protos/' directory and pb2 files in the 'outputs/' directory. Finally, the output of the generated proto file will be as follows:

Detailed Function Explanations

relation(method_name: str, request: str, response: str)

Defines a gRPC service method with its request and response types.

Example:

service = relation("SendMessage", "MessageRequest", "MessageResponse")

set_output_directory(directory: str)

Sets the output directory for generated files.

Example:

MessageProto.set_output_directory("custom_output")

generate_proto(package_name: str, file_name: str) -> str

Generates a .proto file based on the defined classes.

Example:

proto_file = MessageProto.generate_proto("mypackage", "myservice")

generate_pb2(proto_file: str)

Generates Python gRPC code from the .proto file.

Example:

MessageProto.generate_pb2(proto_file)

generate_swagger(proto_file: str) -> str

Generates a Swagger JSON file for API documentation.

Example:

swagger_file = MessageProto.generate_swagger(proto_file)

run_swagger()

Starts a Flask server to serve the Swagger UI.

Example:

MessageProto.run_swagger()

generate_grpc_files(languages: List[str], proto_file: str, port: int = 50051)

Generates gRPC code for the specified languages.

Example:

MessageProto.generate_grpc_files(['python', 'javascript'], proto_file, port=50051)

Advanced Usage

You can use complex data types in your message definitions:

class ComplexProto(ProtoGenerator):
    class ComplexRequest(ProtoGenerator):
        list_field: List[str]
        dict_field: Dict[str, int]

    class ComplexResponse(ProtoGenerator):
        result: List[Dict[str, str]]

    service = relation("ComplexRequest", "ComplexResponse")

Multiple Services

Define multiple services in a single Proto class:

class MultiServiceProto(ProtoGenerator):
    class Request1(ProtoGenerator):
        field1: str

    class Response1(ProtoGenerator):
        result1: str

    class Request2(ProtoGenerator):
        field2: int

    class Response2(ProtoGenerator):
        result2: int

    service1 = relation("Request1", "Response1")
    service2 = relation("Request2", "Response2")

Why Use py2proto?

  1. Simplicity: Define your gRPC services using familiar Python syntax.
  2. Automation: Automatically generate .proto files and gRPC code.
  3. Documentation: Get Swagger UI documentation out of the box.
  4. Flexibility: Support for complex data types and multiple services.
  5. Time-saving: Reduce boilerplate code and manual proto file writing.

Requirements

  • Python 3.6+
  • grpcio
  • grpcio-tools
  • Flask (for Swagger UI)

Supported Data Types

py2proto supports the following Protocol Buffer data types:

  • str (string)
  • int (int32)
  • float (float)
  • bool (bool)
  • bytes (bytes)
  • "int64" (int64)
  • "uint32" (uint32)
  • "uint64" (uint64)
  • "sint32" (sint32)
  • "sint64" (sint64)
  • "fixed32" (fixed32)
  • "fixed64" (fixed64)
  • "sfixed32" (sfixed32)
  • "sfixed64" (sfixed64)
  • "double" (double)
  • List[Type] (repeated)
  • Dict[KeyType, ValueType] (map)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.