-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathFinetunen.py
42 lines (32 loc) · 1.21 KB
/
Finetunen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset, DatasetDict
dataset_matrix = load_dataset('path/to/matrix/dataset')
dataset_isis = load_dataset('path/to/isis/dataset')
dataset = DatasetDict({
'train': dataset_matrix['train'].concatenate(dataset_isis['train']),
'test': dataset_matrix['test'].concatenate(dataset_isis['test']),
})
model_name = "bert-base-uncased"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples['text'], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
)
trainer.train()
trainer.save_model("fine-tuned-model")