forked from ARiSE-Lab/VELVET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yml
51 lines (50 loc) · 1.28 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
model:
configuration: "ggnn"
base:
hidden_dim: 256
dropout_rate: 0.1
num_edge_types: 24
evaluation:
top: 1
node_of_line: 7
window_size: 9
ggnn:
time_steps: [3, 1, 3, 1]
residuals: # Note: keys must be strings for TF checkpointing
"1": [0]
"3": [0, 1]
add_type_bias: true
transformer:
ff_dim: 2048
num_layers: 6
attention_dim: 512
num_heads: 8
model_2:
configuration: "transformer"
base:
hidden_dim: 256
dropout_rate: 0.1
num_edge_types: 24
ggnn:
time_steps: [3, 1, 3, 1]
residuals: # Note: keys must be strings for TF checkpointing
"1": [0]
"3": [0, 1]
add_type_bias: true
transformer:
ff_dim: 2048
num_layers: 6
attention_dim: 512
num_heads: 8
data:
max_batch_size: 1250
max_buffer_size: 100 # In terms of no. of (maximum efficiency) batches.
max_node_size: 1024
valid_interval: 5000 # 25000 for LOC pre-training, 50000 for CLS fine-tuning*, 2500 for LOC fine-tuning, 5000 for CLS fine-tuning
max_valid_samples: 25000
max_token_length: 10 # In terms of (BPE) sub-tokens.
w2v_dimension: 256
training:
max_steps: 50 # 10 for pre-training, 50 for fine-tuning
print_freq: 500
learning_rate: 0.00001 # 0.0001 is for pre-training, 0.00001 is for fine-tuning