From 5c06db89cdb9e6b0ee125c0bd1f4cbec3e436ae5 Mon Sep 17 00:00:00 2001 From: YunLiu <55491388+KumoLiu@users.noreply.github.com> Date: Fri, 17 Nov 2023 02:52:32 +0800 Subject: [PATCH] Fix ci error in unet_plusplus.ipynb (#1573) Fixes #1572 . Clean up long text outputs. ### Checks - [ ] Avoid including large-size files in the PR. - [ ] Clean up long text outputs from code cells in the notebook. - [ ] For security purposes, please check the contents and remove any sensitive info such as user names and private key. - [ ] Ensure (1) hyperlinks and markdown anchors are working (2) use relative paths for tutorial repo files (3) put figure and graphs in the `./figure` folder - [ ] Notebook runs automatically `./runner.sh -t ` Signed-off-by: KumoLiu --- .../network_contraints/unet_plusplus.ipynb | 350 +----------------- 1 file changed, 2 insertions(+), 348 deletions(-) diff --git a/modules/network_contraints/unet_plusplus.ipynb b/modules/network_contraints/unet_plusplus.ipynb index 4de2ffc6b0..1e9b79c024 100644 --- a/modules/network_contraints/unet_plusplus.ipynb +++ b/modules/network_contraints/unet_plusplus.ipynb @@ -117,355 +117,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BasicUNetPlusPlus features: (32, 32, 64, 128, 256, 32).\n", - "BasicUNetPlusPlus(\n", - " (conv_0_0): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(3, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " (conv_1_0): Down(\n", - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (conv_2_0): Down(\n", - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(32, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (conv_3_0): Down(\n", - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (conv_4_0): Down(\n", - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_0_1): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_1_1): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_2_1): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(128, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_3_1): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(256, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_0_2): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_1_2): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_2_2): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(192, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_0_3): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_1_3): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (upcat_0_4): UpCat(\n", - " (upsample): UpSample(\n", - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", - " )\n", - " (convs): TwoConv(\n", - " (conv_0): Convolution(\n", - " (conv): Conv3d(160, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " (conv_1): Convolution(\n", - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", - " (adn): ADN(\n", - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (D): Dropout(p=0.0, inplace=False)\n", - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (final_conv_0_1): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", - " (final_conv_0_2): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", - " (final_conv_0_3): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", - " (final_conv_0_4): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", - ")\n" - ] - } - ], + "outputs": [], "source": [ "model = BasicUnetPlusPlus(\n", " spatial_dims=3,\n",