-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFBCT.py
202 lines (170 loc) · 7.37 KB
/
FBCT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from sddsdata import sddsdata
import numpy as np
import scipy.io as sio
import os
import shutil
import gzip
import time
import glob
import pickle
from zip_mat import save_zip
import timestamp_helpers as th
class FBCT:
def __init__(self, complete_path):
temp_filename = complete_path.split('.gz')[0] + 'uzipd'
with open(temp_filename, "wb") as tmp:
shutil.copyfileobj(gzip.open(complete_path), tmp)
dict_fbct = sio.loadmat(temp_filename)
os.remove(temp_filename)
self.time_vect = np.float_(np.squeeze(dict_fbct['measStamp']))*1e-3
self.fbct_mat = dict_fbct['bunchIntensityFast']
def profile(self, t_obs, get_next_after_tobs=False):
if not get_next_after_tobs:
ind_min = np.argmin(np.abs(self.time_vect-t_obs))
return self.fbct_mat[ind_min,:]
else:
mask = np.ma.masked_less(self.time_vect, t_obs)
ind_min = np.argmin(mask)
return self.fbct_mat[ind_min,:]
def eff_time_at_tobs(self, t_obs, get_next_after_tobs=False):
if not get_next_after_tobs:
ind_min = np.argmin(np.abs(self.time_vect-t_obs))
return self.time_vect[ind_min]
else:
mask = np.ma.masked_less(self.time_vect, t_obs)
t_eff = np.amin(mask)
return t_eff
def normalized_profile(self, t_obs, bct_total_intensity, get_next_after_tobs=False):
subtracted_profile = self.subtract_baseline_profile(t_obs, get_next_after_tobs)
integral = np.trapz(subtracted_profile)
try:
normalized = subtracted_profile / integral
except ZeroDivisionError:
normalized = np.zeros(len(subtracted_profile))
return normalized * bct_total_intensity
def subtract_baseline_profile(self, t_obs, get_next_after_tobs=False):
if not get_next_after_tobs:
ind_min = np.argmin(np.abs(self.time_vect-t_obs))
else:
mask = np.ma.masked_less(self.time_vect - t_obs, 0)
ind_min = np.argmin(mask)
signal_threshold = 0.2*np.max(self.fbct_mat[ind_min,:])
below_thresh_idx = np.where(self.fbct_mat[ind_min,:] < signal_threshold)[0]
baseline = np.mean(self.fbct_mat[ind_min,below_thresh_idx])
return self.fbct_mat[ind_min,:] - baseline
def sdds_to_dict(in_complete_path):
us_string = in_complete_path.split('.')[-2]
try:
temp = sddsdata(in_complete_path, endian='little', full=True)
except IndexError:
print 'Failed to open data file.'
return
data = temp.data[0]
cycleTime = data['cycleTime'].tostring()
t_stamp_unix = time.mktime(time.strptime(cycleTime.replace('"', '').replace('\n','').split('.')[0], '%Y/%m/%d %H:%M:%S'))
beamID = np.int_(data['beamID'])
deviceName = (data['deviceName'].tostring()).split('\n')[0]
acqState = np.int_(data['acqState'])
totalIntensity = data['totalIntensity']
acqTime = data['acqTime'].tostring()
propType = np.int_(data['propType'])
totalIntensity_unitExponent = np.int_(data['totalIntensity_unitExponent'])
bunchIntensitySlow = data['bunchIntensitySlow']
bunchIntensityFast = data['bunchIntensityFast']
gateIntensity_unitExponent = np.int_(data['gateIntensity_unitExponent'])
nbOfMeas = np.int_(data['nbOfMeas'])
totalIntensityFast = data['totalIntensityFast']
superCycleNb = np.int_(data['superCycleNb'])
acqMsg = data['acqMsg'].tostring()
measStamp = data['measStamp']
acqDesc = data['acqDesc'].tostring()
observables = np.int_(data['observables'])
totalIntensity_unit = np.int_(data['totalIntensity_unit'])
dict_meas = {
'beamID':beamID,
'deviceName':deviceName,
'acqState':acqState,
'totalIntensity':totalIntensity,
'acqTime':acqTime,
'propType':propType,
'totalIntensity_unitExponent':totalIntensity_unitExponent,
'bunchIntensitySlow':bunchIntensitySlow,
'bunchIntensityFast':bunchIntensityFast,
'gateIntensity_unitExponent':gateIntensity_unitExponent,
'nbOfMeas':nbOfMeas,
'totalIntensityFast':totalIntensityFast,
'superCycleNb':superCycleNb,
'cycleTime':cycleTime,
'acqMsg':acqMsg,
'measStamp':measStamp,
'acqDesc':acqDesc,
'observables':observables,
'totalIntensity_unit':totalIntensity_unit,
'SPSuser':us_string,
't_stamp_unix':t_stamp_unix
}
return dict_meas
def sdds_to_file(in_complete_path, mat_filename_prefix='SPSmeas_', outp_folder='fbct/'):
dict_meas = sdds_to_dict(in_complete_path)
us_string = dict_meas['SPSuser']
t_stamp_unix = dict_meas['t_stamp_unix']
device_name = dict_meas['deviceName']
out_filename = mat_filename_prefix + us_string +'_'+ device_name + ('_%d'%t_stamp_unix)
out_complete_path = outp_folder + us_string +'/'+ out_filename
if not os.path.isdir(outp_folder + us_string):
print 'I create folder: '+ outp_folder + us_string
os.makedirs(outp_folder + us_string)
sio.savemat(out_complete_path, dict_meas, oned_as='row')
save_zip(out_complete_path)
def make_mat_files(start_time, end_time='Now', data_folder='/user/slops/data/SPS_DATA/OP_DATA/SPS_FBCT/',
device_name=None, SPSuser=None, filename_converted='fbct_converted.txt'):
if type(start_time) is str:
start_tstamp_unix = th.localtime2unixstamp(start_time)
else:
start_tstamp_unix = start_time
if end_time == 'Now':
end_tstamp_unix = time.mktime(time.localtime())
elif type(end_time) is str:
end_tstamp_unix = th.localtime2unixstamp(end_time)
else:
end_tstamp_unix = end_time
try:
with open(filename_converted, 'r') as fid:
list_converted = fid.read().split('\n')
except IOError:
list_converted = []
list_date_strings = th.date_strings_interval(start_tstamp_unix, end_tstamp_unix)
sdds_folder_list = []
for date_string in list_date_strings:
if device_name == None:
sdds_folder_list.extend(glob.glob(data_folder + date_string + '/SPS.BCTFR.*@Acquisition/'))
else:
device_path = glob.glob(data_folder + date_string + '/SPS.BCTFR.%s*@Acquisition/'%device_name)
if len(device_path) == 0:
print 'No data for device %s on %s'%(device_name, date_string)
else:
sdds_folder_list.extend(device_path)
for sdds_folder in sdds_folder_list:
print '\nConverting data in folder: %s\n'%sdds_folder
file_list = os.listdir(sdds_folder)
for filename in file_list:
tstamp_filename = int(float(filename.split('@')[-2]) / 1e9)
if not(tstamp_filename > start_tstamp_unix and tstamp_filename < end_tstamp_unix):
continue
if SPSuser != None:
user_filename = filename.split('.')[-2]
if user_filename != SPSuser:
continue
if filename in list_converted:
continue
try:
complete_path = sdds_folder + filename
print complete_path
sdds_to_file(complete_path)
with open(filename_converted, 'a+') as fid:
fid.write(filename+'\n')
except Exception as err:
print 'Skipped:'
print complete_path
print 'Got exception:'
print err