-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreal_service.py
278 lines (264 loc) · 15 KB
/
real_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import configargparse
from omegaconf import OmegaConf
import time
import numpy as np
import torch
from utilities.env_utils import setup_seed
from utilities.data_utils import transform_pc, transform_dir
from utilities.metrics_utils import invaffordance_metrics, invaffordances2affordance
from utilities.constants import seed, max_grasp_width
def config_parse() -> configargparse.Namespace:
parser = configargparse.ArgumentParser()
# data config
parser.add_argument('--cat', type=str, default='Microwave', help='the category of the object')
# model config
parser.add_argument('--roartnet', action='store_true', help='whether call roartnet')
parser.add_argument('--roartnet_config_path', type=str, default='./configs/eval_config.yaml', help='the path to roartnet config')
# grasp config
parser.add_argument('--graspnet', action='store_true', help='whether call graspnet')
parser.add_argument('--gsnet_weight_path', type=str, default='./weights/checkpoint_detection.tar', help='the path to graspnet weight')
parser.add_argument('--max_grasp_width', type=float, default=max_grasp_width, help='the max width of the gripper')
# task config
parser.add_argument('--selected_part', type=int, default=0, help='the selected part of the object')
# others
parser.add_argument('--seed', type=int, default=seed, help='the random seed')
args = parser.parse_args()
return args
if __name__ == '__main__':
print("please clear temporary data directory")
args = config_parse()
setup_seed(args.seed)
temp_request_path = './temp_data/observation.npz'
temp_response_path = './temp_data/service.npz'
temp_flag_path = './temp_data/flag.npy'
if args.cat == "Microwave":
joint_types = [0]
joint_res = [-1]
elif args.cat == "Refrigerator":
joint_types = [0]
joint_res = [1]
elif args.cat == "Safe":
joint_types = [0]
joint_res = [1]
elif args.cat == "StorageFurniture":
joint_types = [1, 0]
joint_res = [0, -1]
elif args.cat == "Drawer":
joint_types = [1, 1, 1]
joint_res = [0, 0, 0]
elif args.cat == "WashingMachine":
joint_types = [0]
joint_res = [-1]
else:
raise ValueError(f"Unknown category {args.cat}")
if args.roartnet:
print("===> loading roartnet")
start_time = time.time()
from models.roartnet import create_shot_encoder, create_encoder
from inference import inference_fn as roartnet_inference_fn
roartnet_cfg = OmegaConf.load(args.roartnet_config_path)
trained_path = roartnet_cfg.trained.path[args.cat]
trained_cfg = OmegaConf.load(f"{trained_path}/.hydra/config.yaml")
roartnet_cfg = OmegaConf.merge(trained_cfg, roartnet_cfg)
joint_num = roartnet_cfg.dataset.joint_num
resolution = roartnet_cfg.dataset.resolution
receptive_field = roartnet_cfg.dataset.receptive_field
has_rgb = roartnet_cfg.dataset.rgb
denoise = roartnet_cfg.dataset.denoise
normalize = roartnet_cfg.dataset.normalize
sample_points_num = roartnet_cfg.dataset.sample_points_num
sample_tuples_num = roartnet_cfg.algorithm.sampling.sample_tuples_num
tuple_more_num = roartnet_cfg.algorithm.sampling.tuple_more_num
shot_hidden_dims = roartnet_cfg.algorithm.shot_encoder.hidden_dims
shot_feature_dim = roartnet_cfg.algorithm.shot_encoder.feature_dim
shot_bn = roartnet_cfg.algorithm.shot_encoder.bn
shot_ln = roartnet_cfg.algorithm.shot_encoder.ln
shot_dropout = roartnet_cfg.algorithm.shot_encoder.dropout
shot_encoder = create_shot_encoder(shot_hidden_dims, shot_feature_dim,
shot_bn, shot_ln, shot_dropout)
shot_encoder.load_state_dict(torch.load(f'{trained_path}/weights/shot_encoder_latest.pth', map_location=torch.device('cuda')))
shot_encoder = shot_encoder.cuda()
shot_encoder.eval()
overall_hidden_dims = roartnet_cfg.algorithm.encoder.hidden_dims
rot_bin_num = roartnet_cfg.algorithm.voting.rot_bin_num
overall_bn = roartnet_cfg.algorithm.encoder.bn
overall_ln = roartnet_cfg.algorithm.encoder.ln
overall_dropout = roartnet_cfg.algorithm.encoder.dropout
encoder = create_encoder(tuple_more_num, shot_feature_dim, has_rgb, overall_hidden_dims, rot_bin_num, joint_num,
overall_bn, overall_ln, overall_dropout)
encoder.load_state_dict(torch.load(f'{trained_path}/weights/encoder_latest.pth', map_location=torch.device('cuda')))
encoder = encoder.cuda()
encoder.eval()
voting_num = roartnet_cfg.algorithm.voting.voting_num
angle_tol = roartnet_cfg.algorithm.voting.angle_tol
translation2pc = roartnet_cfg.algorithm.voting.translation2pc
multi_candidate = roartnet_cfg.algorithm.voting.multi_candidate
candidate_threshold = roartnet_cfg.algorithm.voting.candidate_threshold
rotation_multi_neighbor = roartnet_cfg.algorithm.voting.rotation_multi_neighbor
neighbor_threshold = roartnet_cfg.algorithm.voting.neighbor_threshold
rotation_cluster = roartnet_cfg.algorithm.voting.rotation_cluster
bmm_size = roartnet_cfg.algorithm.voting.bmm_size
end_time = time.time()
print(f"===> loaded roartnet {end_time - start_time}")
if args.graspnet:
print("===> loading graspnet")
start_time = time.time()
from munch import DefaultMunch
from gsnet import AnyGrasp
grasp_detector_cfg = {
'checkpoint_path': args.gsnet_weight_path,
'max_gripper_width': args.max_grasp_width,
'gripper_height': 0.03,
'top_down_grasp': False,
'add_vdistance': True,
'debug': True
}
grasp_detector_cfg = DefaultMunch.fromDict(grasp_detector_cfg)
grasp_detector = AnyGrasp(grasp_detector_cfg)
grasp_detector.load_net()
end_time = time.time()
print(f"===> loaded graspnet {end_time - start_time}")
while True:
print("===> listening to request")
start_time = time.time()
serviced = np.array(False)
np.save(temp_flag_path, serviced)
got_request = False
while not got_request:
got_request = os.path.exists(temp_request_path)
time.sleep(5.0) # NOTE: hardcode to be longer than the writing time
if got_request:
while not (os.path.isfile(temp_request_path) and os.access(temp_request_path, os.R_OK)):
time.sleep(0.1)
else:
time.sleep(0.1)
observation = np.load(temp_request_path, allow_pickle=True)
cam_pc = observation['point_cloud']
pc_rgb = observation['rgb']
c2c = np.array([[0, 0, 1, 0], [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 1]])
cam_pc_model = transform_pc(cam_pc, c2c)
time.sleep(0.5)
os.remove(temp_request_path)
end_time = time.time()
print(f"===> got request {end_time - start_time}")
print("===> inferencing model")
if args.roartnet:
start_time = time.time()
pred_joint_bases, pred_joint_directions, pred_affordable_positions = roartnet_inference_fn(cam_pc_model, pc_rgb if has_rgb else None, shot_encoder, encoder,
denoise, normalize, resolution, receptive_field, sample_points_num, sample_tuples_num, tuple_more_num,
voting_num, rot_bin_num, angle_tol,
translation2pc, multi_candidate, candidate_threshold, rotation_cluster,
rotation_multi_neighbor, neighbor_threshold, bmm_size, joint_num, device=0)
pred_selected_joint_base = pred_joint_bases[args.selected_part]
pred_selected_joint_direction = pred_joint_directions[args.selected_part]
pred_selected_affordable_position = pred_affordable_positions[args.selected_part]
pred_selected_joint_base = transform_pc(pred_selected_joint_base[None, :], np.linalg.inv(c2c))[0]
pred_selected_joint_direction = transform_dir(pred_selected_joint_direction[None, :], np.linalg.inv(c2c))[0]
pred_selected_affordable_position = transform_pc(pred_selected_affordable_position[None, :], np.linalg.inv(c2c))[0]
end_time = time.time()
print(f"===> shot_dropout predicted {end_time - start_time}")
print("===> detecting grasps")
if args.graspnet:
start_time = time.time()
# gg_grasp = grasp_detector.get_grasp(pcd_grasp.astype(np.float32), colors=None, lims=[
# np.floor(np.min(pcd_grasp[:, 0])) - 0.1, np.ceil(np.max(pcd_grasp[:, 0])) + 0.1,
# np.floor(np.min(pcd_grasp[:, 1])) - 0.1, np.ceil(np.max(pcd_grasp[:, 1])) + 0.1,
# np.floor(np.min(pcd_grasp[:, 2])) - 0.1, np.ceil(np.max(pcd_grasp[:, 2])) + 0.1])
# gg_grasp = grasp_detector.get_grasp(pcd_grasp.astype(np.float32), colors=pcd_color, lims=[-float('inf'), float('inf'), -float('inf'), float('inf'), -float('inf'), float('inf')])
# gg_grasp = grasp_detector.get_grasp(pcd_grasp.astype(np.float32), colors=pcd_color, lims=None, apply_object_mask=True, dense_grasp=False, collision_detection=True)
try:
gg_grasp = grasp_detector.get_grasp(cam_pc.astype(np.float32), colors=pc_rgb, lims=None, voxel_size=0.0075, apply_object_mask=False, dense_grasp=True, collision_detection='fast')
except:
gg_grasp = grasp_detector.get_grasp(cam_pc.astype(np.float32), colors=pc_rgb, lims=None, voxel_size=0.0075, apply_object_mask=False, dense_grasp=True, collision_detection='slow')
if gg_grasp is None:
gg_grasp = []
else:
if len(gg_grasp) != 2:
gg_grasp = []
else:
gg_grasp, pcd_o3d = gg_grasp
gg_grasp = gg_grasp.nms().sort_by_score()
# grippers_o3d = gg_grasp.to_open3d_geometry_list()
# frame_o3d = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.1)
# o3d.visualization.draw_geometries([*grippers_o3d, pcd_o3d, frame_o3d])
if len(gg_grasp) == 0:
np.savez(temp_response_path,
joint_base=pred_selected_joint_base,
joint_direction=pred_selected_joint_direction,
affordable_position=pred_selected_affordable_position,
joint_type=joint_types[args.selected_part],
joint_re=joint_res[args.selected_part],
num_grasps=0)
while not (os.path.isfile(temp_response_path) and os.access(temp_response_path, os.R_OK)):
time.sleep(0.1)
serviced = np.array(True)
np.save(temp_flag_path, serviced)
while True:
while not (os.path.isfile(temp_flag_path) and os.access(temp_flag_path, os.R_OK)):
time.sleep(0.1)
serviced = np.load(temp_flag_path).item()
if not serviced:
os.remove(temp_flag_path)
os.remove(temp_response_path)
break
else:
time.sleep(0.1)
continue
grasp_scores, grasp_widths, grasp_depths, grasp_translations, grasp_rotations, grasp_invaffordances = [], [], [], [], [], []
for g_idx, g_grasp in enumerate(gg_grasp):
grasp_score = g_grasp.score
grasp_scores.append(grasp_score)
grasp_width = g_grasp.width
grasp_widths.append(grasp_width)
grasp_depth = g_grasp.depth
grasp_depths.append(grasp_depth)
grasp_translation = g_grasp.translation
grasp_translations.append(grasp_translation)
grasp_rotation = g_grasp.rotation_matrix
grasp_rotations.append(grasp_rotation)
grasp_invaffordance = invaffordance_metrics(grasp_translation, grasp_rotation, grasp_score, pred_selected_affordable_position,
pred_selected_joint_base, pred_selected_joint_direction, joint_types[args.selected_part])
grasp_invaffordances.append(grasp_invaffordance)
grasp_affordances = invaffordances2affordance(grasp_invaffordances)
selected_grasp_idx = np.argmax(grasp_affordances)
selected_grasp_score = grasp_scores[selected_grasp_idx]
selected_grasp_width = grasp_widths[selected_grasp_idx]
selected_grasp_width = max(min(selected_grasp_width * 1.5, args.max_grasp_width), 0.0)
selected_grasp_depth = grasp_depths[selected_grasp_idx]
selected_grasp_translation = grasp_translations[selected_grasp_idx]
selected_grasp_rotation = grasp_rotations[selected_grasp_idx]
selected_grasp_affordance = grasp_affordances[selected_grasp_idx]
end_time = time.time()
print(f"===> anygrasp detected {end_time - start_time} {len(gg_grasp)}")
print("===> sending response")
start_time = time.time()
np.savez(temp_response_path,
joint_base=pred_selected_joint_base,
joint_direction=pred_selected_joint_direction,
affordable_position=pred_selected_affordable_position,
joint_type=joint_types[args.selected_part],
joint_re=joint_res[args.selected_part],
num_grasps=len(gg_grasp),
grasp_score=selected_grasp_score,
grasp_width=selected_grasp_width,
grasp_depth=selected_grasp_depth,
grasp_translation=selected_grasp_translation,
grasp_rotation=selected_grasp_rotation,
grasp_affordance=selected_grasp_affordance)
while not (os.path.isfile(temp_response_path) and os.access(temp_response_path, os.R_OK)):
time.sleep(0.1)
serviced = np.array(True)
np.save(temp_flag_path, serviced)
while True:
while not (os.path.isfile(temp_flag_path) and os.access(temp_flag_path, os.R_OK)):
time.sleep(0.1)
serviced = np.load(temp_flag_path).item()
if not serviced:
os.remove(temp_flag_path)
os.remove(temp_response_path)
break
else:
time.sleep(0.1)
end_time = time.time()
print(f"===> sent response {end_time - start_time}")