-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtd3.py
225 lines (191 loc) · 8.75 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
# Created at 2020/3/1
import pickle
import numpy as np
import torch
import torch.optim as optim
from Algorithms.pytorch.Models.Policy_ddpg import Policy
from Algorithms.pytorch.Models.Value_ddpg import Value
from Algorithms.pytorch.TD3.td3_step import td3_step
from Common.replay_memory import Memory
from Utils.env_util import get_env_info
from Utils.file_util import check_path
from Utils.torch_util import device, FLOAT
from Utils.zfilter import ZFilter
class TD3:
def __init__(self,
env_id,
render=False,
num_process=1,
memory_size=1000000,
lr_p=1e-3,
lr_v=1e-3,
gamma=0.99,
polyak=0.995,
action_noise=0.1,
target_action_noise_std=0.2,
target_action_noise_clip=0.5,
explore_size=10000,
step_per_iter=3000,
batch_size=100,
min_update_step=1000,
update_step=50,
policy_update_delay=2,
seed=1,
model_path=None
):
self.env_id = env_id
self.gamma = gamma
self.polyak = polyak
self.action_noise = action_noise
self.target_action_noise_std = target_action_noise_std
self.target_action_noise_clip = target_action_noise_clip
self.memory = Memory(memory_size)
self.explore_size = explore_size
self.step_per_iter = step_per_iter
self.render = render
self.num_process = num_process
self.lr_p = lr_p
self.lr_v = lr_v
self.batch_size = batch_size
self.min_update_step = min_update_step
self.update_step = update_step
self.policy_update_delay = policy_update_delay
self.model_path = model_path
self.seed = seed
self._init_model()
def _init_model(self):
"""init model from parameters"""
self.env, env_continuous, num_states, self.num_actions = get_env_info(
self.env_id)
assert env_continuous, "TD3 is only applicable to continuous environment !!!!"
self.action_low, self.action_high = self.env.action_space.low[
0], self.env.action_space.high[0]
# seeding
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.env.seed(self.seed)
self.policy_net = Policy(
num_states, self.num_actions, self.action_high).to(device)
self.policy_net_target = Policy(
num_states, self.num_actions, self.action_high).to(device)
self.value_net_1 = Value(num_states, self.num_actions).to(device)
self.value_net_target_1 = Value(
num_states, self.num_actions).to(device)
self.value_net_2 = Value(num_states, self.num_actions).to(device)
self.value_net_target_2 = Value(
num_states, self.num_actions).to(device)
self.running_state = ZFilter((num_states,), clip=5)
if self.model_path:
print("Loading Saved Model {}_td3.p".format(self.env_id))
self.policy_net, self.value_net_1, self.value_net_2, self.running_state = pickle.load(
open('{}/{}_td3.p'.format(self.model_path, self.env_id), "rb"))
self.policy_net_target.load_state_dict(self.policy_net.state_dict())
self.value_net_target_1.load_state_dict(self.value_net_1.state_dict())
self.value_net_target_2.load_state_dict(self.value_net_2.state_dict())
self.optimizer_p = optim.Adam(
self.policy_net.parameters(), lr=self.lr_p)
self.optimizer_v_1 = optim.Adam(
self.value_net_1.parameters(), lr=self.lr_v)
self.optimizer_v_2 = optim.Adam(
self.value_net_2.parameters(), lr=self.lr_v)
def choose_action(self, state, noise_scale):
"""select action"""
state = FLOAT(state).unsqueeze(0).to(device)
with torch.no_grad():
action, log_prob = self.policy_net.get_action_log_prob(state)
action = action.cpu().numpy()[0]
# add noise
noise = noise_scale * np.random.randn(self.num_actions)
action += noise
action = np.clip(action, -self.action_high, self.action_high)
return action
def eval(self, i_iter, render=False):
"""evaluate model"""
state = self.env.reset()
test_reward = 0
while True:
if render:
self.env.render()
# state = self.running_state(state)
action = self.choose_action(state, 0)
state, reward, done, _ = self.env.step(action)
test_reward += reward
if done:
break
print(f"Iter: {i_iter}, test Reward: {test_reward}")
self.env.close()
def learn(self, writer, i_iter):
"""interact"""
global_steps = (i_iter - 1) * self.step_per_iter
log = dict()
num_steps = 0
num_episodes = 0
total_reward = 0
min_episode_reward = float('inf')
max_episode_reward = float('-inf')
while num_steps < self.step_per_iter:
state = self.env.reset()
# state = self.running_state(state)
episode_reward = 0
for t in range(10000):
if self.render:
self.env.render()
if global_steps < self.explore_size: # explore
action = self.env.action_space.sample()
else: # action with noise
action = self.choose_action(state, self.action_noise)
next_state, reward, done, _ = self.env.step(action)
# next_state = self.running_state(next_state)
mask = 0 if done else 1
# ('state', 'action', 'reward', 'next_state', 'mask', 'log_prob')
self.memory.push(state, action, reward, next_state, mask, None)
episode_reward += reward
global_steps += 1
num_steps += 1
if global_steps >= self.min_update_step and global_steps % self.update_step == 0:
for k in range(self.update_step):
batch = self.memory.sample(
self.batch_size) # random sample batch
self.update(batch, k)
if done or num_steps >= self.step_per_iter:
break
state = next_state
num_episodes += 1
total_reward += episode_reward
min_episode_reward = min(episode_reward, min_episode_reward)
max_episode_reward = max(episode_reward, max_episode_reward)
self.env.close()
log['num_steps'] = num_steps
log['num_episodes'] = num_episodes
log['total_reward'] = total_reward
log['avg_reward'] = total_reward / num_episodes
log['max_episode_reward'] = max_episode_reward
log['min_episode_reward'] = min_episode_reward
print(f"Iter: {i_iter}, num steps: {log['num_steps']}, total reward: {log['total_reward']: .4f}, "
f"min reward: {log['min_episode_reward']: .4f}, max reward: {log['max_episode_reward']: .4f}, "
f"average reward: {log['avg_reward']: .4f}")
# record reward information
writer.add_scalar("total reward", log['total_reward'], i_iter)
writer.add_scalar("average reward", log['avg_reward'], i_iter)
writer.add_scalar("min reward", log['min_episode_reward'], i_iter)
writer.add_scalar("max reward", log['max_episode_reward'], i_iter)
writer.add_scalar("num steps", log['num_steps'], i_iter)
def update(self, batch, k_iter):
"""learn model"""
batch_state = FLOAT(batch.state).to(device)
batch_action = FLOAT(batch.action).to(device)
batch_reward = FLOAT(batch.reward).to(device)
batch_next_state = FLOAT(batch.next_state).to(device)
batch_mask = FLOAT(batch.mask).to(device)
# update by TD3
alg_step_stats = td3_step(self.policy_net, self.policy_net_target, self.value_net_1, self.value_net_target_1, self.value_net_2,
self.value_net_target_2, self.optimizer_p, self.optimizer_v_1, self.optimizer_v_2, batch_state,
batch_action, batch_reward, batch_next_state, batch_mask, self.gamma, self.polyak,
self.target_action_noise_std, self.target_action_noise_clip, self.action_high,
k_iter % self.policy_update_delay == 0)
def save(self, save_path):
"""save model"""
check_path(save_path)
pickle.dump((self.policy_net, self.value_net_1, self.value_net_2, self.running_state),
open('{}/{}_td3.p'.format(save_path, self.env_id), 'wb'))