-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathduelingdqn_step.py
23 lines (18 loc) · 994 Bytes
/
duelingdqn_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#!/usr/bin/env python
# Created at 2020/3/22
import tensorflow as tf
from Utils.tf2_util import TDOUBLE
def duelingdqn_step(value_net, optimizer_value, value_net_target, states, actions, rewards, next_states, masks, gamma):
"""update value net"""
with tf.GradientTape() as tape:
q_values = tf.reduce_sum(value_net.predict_on_batch(states) * tf.one_hot(actions, depth=value_net.dim_action, dtype=TDOUBLE),
axis=-1)
q_target_next_values = value_net_target.predict_on_batch(next_states)
q_target_values = rewards + gamma * masks * \
tf.reduce_max(q_target_next_values, axis=-1)
value_loss = tf.keras.losses.mean_squared_error(
tf.stop_gradient(q_target_values), q_values)
value_grads = tape.gradient(value_loss, value_net.trainable_variables)
optimizer_value.apply_gradients(grads_and_vars=zip(
value_grads, value_net.trainable_variables))
return {"critic_loss": value_loss}