-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathconet.py
242 lines (190 loc) · 10.4 KB
/
conet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# -*- coding: utf-8 -*-
# @Time : 2022/3/30
# @Author : Gaowei Zhang
# @Email : [email protected]
# UPDATE
# @Time : 2022/4/11
# @Author : Zihan Lin
# @email : [email protected]
r"""
CoNet
################################################
Reference:
Guangneng Hu et al. "CoNet: Collaborative Cross Networks for Cross-Domain Recommendation." in CIKM 2018.
"""
import torch
import torch.nn as nn
from recbole_cdr.model.crossdomain_recommender import CrossDomainRecommender
from recbole.model.init import xavier_normal_initialization
from recbole.utils import InputType
class CoNet(CrossDomainRecommender):
r"""CoNet takes neural network as the basic model and uses cross connections
unit to improve the learning of matching functions in the current domain.
"""
input_type = InputType.POINTWISE
def __init__(self, config, dataset):
super(CoNet, self).__init__(config, dataset)
# load dataset info
self.SOURCE_LABEL = dataset.source_domain_dataset.label_field
self.TARGET_LABEL = dataset.target_domain_dataset.label_field
assert self.overlapped_num_items == 1 or self.overlapped_num_users == 1, \
"CoNet model only support user overlapped or item overlapped dataset! "
if self.overlapped_num_users > 1:
self.mode = 'overlap_users'
elif self.overlapped_num_items > 1:
self.mode = 'overlap_items'
else:
self.mode = 'non_overlap'
# load parameters info
self.device = config['device']
# load parameters info
self.latent_dim = config['embedding_size'] # int type:the embedding size of lightGCN
self.reg_weight = config['reg_weight'] # float32 type: the weight decay for l2 normalization
self.cross_layers = config["mlp_hidden_size"] # list type: the list of hidden layers size
# define layers and loss
self.source_user_embedding = torch.nn.Embedding(num_embeddings=self.total_num_users, embedding_dim=self.latent_dim)
self.target_user_embedding = torch.nn.Embedding(num_embeddings=self.total_num_users, embedding_dim=self.latent_dim)
self.source_item_embedding = torch.nn.Embedding(num_embeddings=self.total_num_items, embedding_dim=self.latent_dim)
self.target_item_embedding = torch.nn.Embedding(num_embeddings=self.total_num_items, embedding_dim=self.latent_dim)
self.loss = nn.BCELoss()
with torch.no_grad():
self.source_user_embedding.weight[self.overlapped_num_users: self.target_num_users].fill_(0)
self.source_item_embedding.weight[self.overlapped_num_items: self.target_num_items].fill_(0)
self.target_user_embedding.weight[self.target_num_users:].fill_(0)
self.target_item_embedding.weight[self.target_num_items:].fill_(0)
self.source_crossunit_linear, self.source_crossunit_act \
= self.cross_units([2 * self.latent_dim] + self.cross_layers)
self.source_outputunit = nn.Sequential(
nn.Linear(self.cross_layers[-1], 1),
nn.Sigmoid()
)
self.target_crossunit_linear, self.target_crossunit_act \
= self.cross_units([2 * self.latent_dim] + self.cross_layers)
self.target_outputunit = nn.Sequential(
nn.Linear(self.cross_layers[-1], 1),
nn.Sigmoid()
)
self.crossparas = self.cross_parameters([2 * self.latent_dim] + self.cross_layers)
# parameters initialization
self.apply(xavier_normal_initialization)
def cross_units(self, cross_layers):
cross_modules_linear, cross_modules_act = [], []
for i, (d_in, d_out) in enumerate(zip(cross_layers[:-1], cross_layers[1:])):
cross_modules_linear.append(nn.Linear(d_in, d_out))
cross_modules_act.append(nn.ReLU())
return nn.ModuleList(cross_modules_linear), nn.ModuleList(cross_modules_act)
def cross_parameters(self, cross_layers):
cross_paras = []
for i, (d_in, d_out) in enumerate(zip(cross_layers[:-1], cross_layers[1:])):
para = nn.Linear(d_in, d_out, bias=False)
cross_paras.append(para)
return nn.ModuleList(cross_paras)
def source_forward(self, user, item):
source_user_embedding = self.source_user_embedding(user)
source_item_embedding = self.source_item_embedding(item)
target_user_embedding = self.target_user_embedding(user)
target_item_embedding = self.target_item_embedding(item)
source_crossinput = torch.cat([source_user_embedding, source_item_embedding], dim=1).to(self.device)
target_crossinput = torch.cat([target_user_embedding, target_item_embedding], dim=1).to(self.device)
if self.mode == 'overlap_users':
overlap_idx = user < self.overlapped_num_users
else:
overlap_idx = item < self.overlapped_num_items
for i in range(len(self.source_crossunit_linear)):
source_fc_module, source_act_module = self.source_crossunit_linear[i], self.source_crossunit_act[i]
source_fc_module = source_fc_module
source_act_module = source_act_module
cross_para = self.crossparas[i].weight.t()
target_fc_module, target_act_module = self.target_crossunit_linear[i], self.target_crossunit_act[i]
target_fc_module = target_fc_module
target_act_module = target_act_module
source_crossoutput = source_fc_module(source_crossinput)
source_crossoutput[overlap_idx] = source_crossoutput[overlap_idx] + torch.mm(target_crossinput, cross_para)[
overlap_idx]
source_crossoutput = source_act_module(source_crossoutput)
target_crossoutput = target_fc_module(target_crossinput)
target_crossoutput[overlap_idx] = target_crossoutput[overlap_idx] + torch.mm(source_crossinput, cross_para)[
overlap_idx]
target_crossoutput = target_act_module(target_crossoutput)
source_crossinput = source_crossoutput
target_crossinput = target_crossoutput
source_out = self.source_outputunit(source_crossinput).squeeze()
return source_out
def target_forward(self, user, item):
source_user_embedding = self.source_user_embedding(user)
source_item_embedding = self.source_item_embedding(item)
target_user_embedding = self.target_user_embedding(user)
target_item_embedding = self.target_item_embedding(item)
source_crossinput = torch.cat([source_user_embedding, source_item_embedding], dim=1).to(self.device)
target_crossinput = torch.cat([target_user_embedding, target_item_embedding], dim=1).to(self.device)
if self.mode == 'overlap_users':
overlap_idx = user < self.overlapped_num_users
else:
overlap_idx = item < self.overlapped_num_items
for i in range(len(self.target_crossunit_linear)):
source_fc_module, source_act_module = self.source_crossunit_linear[i], self.source_crossunit_act[i]
source_fc_module = source_fc_module
source_act_module = source_act_module
cross_para = self.crossparas[i].weight.t()
target_fc_module, target_act_module = self.target_crossunit_linear[i], self.target_crossunit_act[i]
target_fc_module = target_fc_module
target_act_module = target_act_module
source_crossoutput = source_fc_module(source_crossinput)
source_crossoutput[overlap_idx] = source_crossoutput[overlap_idx] + torch.mm(target_crossinput, cross_para)[
overlap_idx]
source_crossoutput = source_act_module(source_crossoutput)
target_crossoutput = target_fc_module(target_crossinput)
target_crossoutput[overlap_idx] = target_crossoutput[overlap_idx] + torch.mm(source_crossinput, cross_para)[
overlap_idx]
target_crossoutput = target_act_module(target_crossoutput)
source_crossinput = source_crossoutput
target_crossinput = target_crossoutput
target_out = self.target_outputunit(target_crossinput).squeeze()
return target_out
def calculate_loss(self, interaction):
source_user = interaction[self.SOURCE_USER_ID]
source_item = interaction[self.SOURCE_ITEM_ID]
source_label = interaction[self.SOURCE_LABEL]
target_user = interaction[self.TARGET_USER_ID]
target_item = interaction[self.TARGET_ITEM_ID]
target_label = interaction[self.TARGET_LABEL]
p_source = self.source_forward(source_user, source_item)
p_target = self.target_forward(target_user, target_item)
loss_s = self.loss(p_source, source_label)
loss_t = self.loss(p_target, target_label)
reg_loss = 0
for para in self.crossparas:
reg_loss += torch.norm(para.weight)
loss = loss_s + loss_t + reg_loss
return loss
def predict(self, interaction):
user = interaction[self.TARGET_USER_ID]
item = interaction[self.TARGET_ITEM_ID]
user_e = self.target_user_embedding(user)
item_e = self.target_item_embedding(item)
input = torch.cat([user_e, item_e], dim=1)
for i in range(len(self.target_crossunit_linear)):
target_fc_module, target_act_module = self.target_crossunit_linear[i], self.target_crossunit_act[i]
output = target_act_module(target_fc_module(input))
input = output
p = self.target_outputunit(input)
return p
def full_sort_predict(self, interaction):
user = interaction[self.TARGET_USER_ID]
user_e = self.target_user_embedding(user)
user_num = user_e.shape[0]
all_item_e = self.target_item_embedding.weight[:self.target_num_items]
item_num = all_item_e.shape[0]
all_user_e = user_e.repeat(1, item_num).view(-1, self.latent_dim)
user_e_list = torch.split(all_user_e, [item_num]*user_num)
score_list = []
for u_embed in user_e_list:
input = torch.cat([u_embed, all_item_e], dim=1)
for i in range(len(self.target_crossunit_linear)):
target_fc_module, target_act_module = self.target_crossunit_linear[i], self.target_crossunit_act[i]
output = target_act_module(target_fc_module(input))
input = output
p = self.target_outputunit(input)
score_list.append(p)
score = torch.cat(score_list, dim=1).transpose(0, 1)
return score