-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
242 lines (239 loc) · 6.04 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
def define_main_parser(parser=None):
if parser is None:
parser = argparse.ArgumentParser()
parser.add_argument(
"--seed", type=int,
default=9,
help="seed to use: 9[default]"
)
parser.add_argument(
"--fieldtransf-nheads",
type=int,
default=12,
help="Nb of heads for TabBERT FieldTransformer"
)
parser.add_argument(
"--fieldtransf-nlayers",
type=int,
default=1,
help="Nb of layers for TabBERT FieldTransformer"
)
parser.add_argument(
"--dry-run",
type=int,
default=0,
help="Max number of samples in the full dataset"
)
parser.add_argument(
"--trash",
action='store_true',
help="Store results in /_trash/ folder (for debugging)"
)
parser.add_argument(
"--scale-targets",
action='store_true',
help="MinMax scale the targets for regression (e.g;, Pollution dataset)"
)
parser.add_argument(
"--scaling",
type=str,
default="std",
choices=["std", "quantnorm", "minmax"],
help="Type of target scaling performed"
)
parser.add_argument(
"--runs",
type=int,
default=1,
help="Various runs, increasing the seed by 1"
)
parser.add_argument(
"--n-layers",
type=int,
default=12,
help="Number of Sequence Transformer layers"
)
parser.add_argument(
"--n-heads",
type=int,
default=12,
help="Number of attention heads"
)
parser.add_argument(
"--family",
choices=["fttransf_flatten", "tabbie", "column_tabbert", "row_tabbert", "fieldy"],
help="Model family"
)
parser.add_argument(
"--columnbert",
action='store_true',
help="TabFormer but by columns, not rows, for the Fieldtransformer"
)
parser.add_argument(
"--mlm",
action='store_true',
help="masked lm loss; pass it for BERT",
default=False,
)
parser.add_argument(
"--mlm-loss",
type=str,
help="Compute the loss across the attribute vocab or across all vocab [attribute, all]",
default="all",
)
parser.add_argument(
"--mlm-prob",
type=float,
default=0.15,
help="Token masking probability for MLM pre-training"
)
parser.add_argument(
"--init-lr",
type=float,
default=0.00005, # HF default 5e-05
help="Initial pre-training lr"
)
parser.add_argument(
"--ft-lr",
type=float,
default=0.00005, # HF default 5e-05
help="Initial fine-tuning lr"
)
parser.add_argument(
"--dropout",
type=float,
default=0.1, # HF default 0.1
help="Dropout in BERT-like model"
)
parser.add_argument(
"--data-type",
type=str,
default="card",
choices=['card', 'prsa', 'kdd'],
help='root directory for files'
)
parser.add_argument(
"--data_root",
type=str,
default="./data/credit_card/",
help='root directory for files'
)
parser.add_argument(
"--data_fname",
type=str,
default="card_transaction.v1",
help='file name of transaction'
)
parser.add_argument(
"--data_extension",
type=str,
default="",
help="file name extension to add to cache"
)
parser.add_argument(
"--vocab_file",
type=str,
default='vocab.nb',
help="cached vocab file"
)
parser.add_argument(
'--user_ids',
nargs='+',
default=None,
help='pass list of user ids to filter data by'
)
parser.add_argument(
"--cached",
action='store_true',
help='use cached data files'
)
parser.add_argument(
"--nrows",
type=int,
default=None,
help="no of transactions to use"
)
parser.add_argument(
"--vocab-dir",
type=str,
default='./data/',
help="path to vocab load/dump"
)
parser.add_argument(
"--output-dir",
type=str,
default='checkpoints',
help="path to model dump"
)
parser.add_argument(
"--output-dir-initial",
type=str,
default='checkpoints',
help="path to model dump (used when they are multiple seed runs)"
)
parser.add_argument(
"--pre-train",
action='store_true',
help="Perform pretraining",
# default=True,
)
parser.add_argument(
"--fine-tune",
action='store_true',
help="Perform fine-tuning",
# default=True,
)
parser.add_argument(
"--do-eval",
action='store_true',
help="enable evaluation flag",
default=True,
)
parser.add_argument(
"--do-train",
action='store_true',
help="enable training flag",
default=True,
)
parser.add_argument(
"--pos-emb",
action='store_true',
help="Embed the row position in the sequence",
)
parser.add_argument(
"--col-emb",
action='store_true',
help="Embed the column index for each field"
)
parser.add_argument(
"--pt-epochs",
type=int,
default=12,
help="number of pretraining training epochs",
)
parser.add_argument(
"--ft-epochs",
type=int,
default=10,
help="number of fine-tuning epochs"
)
parser.add_argument(
"--hidden-size",
type=int,
default=768,
help="Hidden size for Sequence Transformer (must be divisible by the number of columns)"
)
parser.add_argument(
"--bs",
type=int,
default=120,
help="Batch size",
)
parser.add_argument(
"--mse",
action='store_true',
help="Use MSE loss instead of BCE loss for multi-regression task",
default=False,
)
return parser