forked from nnzhan/Graph-WaveNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
175 lines (144 loc) · 6.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import numpy as np
import argparse
import time
import util
import matplotlib.pyplot as plt
from engine import trainer
parser = argparse.ArgumentParser()
parser.add_argument('--device',type=str,default='cuda:3',help='')
parser.add_argument('--data',type=str,default='data/METR-LA',help='data path')
parser.add_argument('--adjdata',type=str,default='data/sensor_graph/adj_mx.pkl',help='adj data path')
parser.add_argument('--adjtype',type=str,default='doubletransition',help='adj type')
parser.add_argument('--gcn_bool',action='store_true',help='whether to add graph convolution layer')
parser.add_argument('--aptonly',action='store_true',help='whether only adaptive adj')
parser.add_argument('--addaptadj',action='store_true',help='whether add adaptive adj')
parser.add_argument('--randomadj',action='store_true',help='whether random initialize adaptive adj')
parser.add_argument('--seq_length',type=int,default=12,help='')
parser.add_argument('--nhid',type=int,default=32,help='')
parser.add_argument('--in_dim',type=int,default=2,help='inputs dimension')
parser.add_argument('--num_nodes',type=int,default=207,help='number of nodes')
parser.add_argument('--batch_size',type=int,default=64,help='batch size')
parser.add_argument('--learning_rate',type=float,default=0.001,help='learning rate')
parser.add_argument('--dropout',type=float,default=0.3,help='dropout rate')
parser.add_argument('--weight_decay',type=float,default=0.0001,help='weight decay rate')
parser.add_argument('--epochs',type=int,default=100,help='')
parser.add_argument('--print_every',type=int,default=50,help='')
#parser.add_argument('--seed',type=int,default=99,help='random seed')
parser.add_argument('--save',type=str,default='./garage/metr',help='save path')
parser.add_argument('--expid',type=int,default=1,help='experiment id')
args = parser.parse_args()
def main():
#set seed
#torch.manual_seed(args.seed)
#np.random.seed(args.seed)
#load data
device = torch.device(args.device)
sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj(args.adjdata,args.adjtype)
dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
supports = [torch.tensor(i).to(device) for i in adj_mx]
print(args)
if args.randomadj:
adjinit = None
else:
adjinit = supports[0]
if args.aptonly:
supports = None
engine = trainer(scaler, args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout,
args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj,
adjinit)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
for i in range(1,args.epochs+1):
#if i % 10 == 0:
#lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10)))
#for g in engine.optimizer.param_groups:
#g['lr'] = lr
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
dataloader['train_loader'].shuffle()
for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()):
trainx = torch.Tensor(x).to(device)
trainx= trainx.transpose(1, 3)
trainy = torch.Tensor(y).to(device)
trainy = trainy.transpose(1, 3)
metrics = engine.train(trainx, trainy[:,0,:,:])
train_loss.append(metrics[0])
train_mape.append(metrics[1])
train_rmse.append(metrics[2])
if iter % args.print_every == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]),flush=True)
t2 = time.time()
train_time.append(t2-t1)
#validation
valid_loss = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
testy = torch.Tensor(y).to(device)
testy = testy.transpose(1, 3)
metrics = engine.eval(testx, testy[:,0,:,:])
valid_loss.append(metrics[0])
valid_mape.append(metrics[1])
valid_rmse.append(metrics[2])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
torch.save(engine.model.state_dict(), args.save+"_epoch_"+str(i)+"_"+str(round(mvalid_loss,2))+".pth")
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
#testing
bestid = np.argmin(his_loss)
engine.model.load_state_dict(torch.load(args.save+"_epoch_"+str(bestid+1)+"_"+str(round(his_loss[bestid],2))+".pth"))
outputs = []
realy = torch.Tensor(dataloader['y_test']).to(device)
realy = realy.transpose(1,3)[:,0,:,:]
for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1,3)
with torch.no_grad():
preds = engine.model(testx).transpose(1,3)
outputs.append(preds.squeeze())
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
print("Training finished")
print("The valid loss on best model is", str(round(his_loss[bestid],4)))
amae = []
amape = []
armse = []
for i in range(12):
pred = scaler.inverse_transform(yhat[:,:,i])
real = realy[:,:,i]
metrics = util.metric(pred,real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
torch.save(engine.model.state_dict(), args.save+"_exp"+str(args.expid)+"_best_"+str(round(his_loss[bestid],2))+".pth")
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
print("Total time spent: {:.4f}".format(t2-t1))