-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathstabilization_attention.py
1211 lines (1047 loc) · 63.3 KB
/
stabilization_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from einops import rearrange
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_partition_noreshape(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (B, num_windows_h, num_windows_w, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def get_roll_masks(H, W, window_size, shift_size):
#####################################
# move to top-left
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, H-window_size),
slice(H-window_size, H-shift_size),
slice(H-shift_size, H))
w_slices = (slice(0, W-window_size),
slice(W-window_size, W-shift_size),
slice(W-shift_size, W))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, window_size * window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask_tl = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
####################################
# move to top right
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, H-window_size),
slice(H-window_size, H-shift_size),
slice(H-shift_size, H))
w_slices = (slice(0, shift_size),
slice(shift_size, window_size),
slice(window_size, W))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, window_size * window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask_tr = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
####################################
# move to bottom left
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, shift_size),
slice(shift_size, window_size),
slice(window_size, H))
w_slices = (slice(0, W-window_size),
slice(W-window_size, W-shift_size),
slice(W-shift_size, W))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, window_size * window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask_bl = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
####################################
# move to bottom right
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, shift_size),
slice(shift_size, window_size),
slice(window_size, H))
w_slices = (slice(0, shift_size),
slice(shift_size, window_size),
slice(window_size, W))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, window_size * window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask_br = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
# append all
attn_mask_all = torch.cat((attn_mask_tl, attn_mask_tr, attn_mask_bl, attn_mask_br), -1)
return attn_mask_all
def get_relative_position_index(q_windows, k_windows):
"""
Args:
q_windows: tuple (query_window_height, query_window_width)
k_windows: tuple (key_window_height, key_window_width)
Returns:
relative_position_index: query_window_height*query_window_width, key_window_height*key_window_width
"""
# get pair-wise relative position index for each token inside the window
coords_h_q = torch.arange(q_windows[0])
coords_w_q = torch.arange(q_windows[1])
coords_q = torch.stack(torch.meshgrid([coords_h_q, coords_w_q])) # 2, Wh_q, Ww_q
coords_h_k = torch.arange(k_windows[0])
coords_w_k = torch.arange(k_windows[1])
coords_k = torch.stack(torch.meshgrid([coords_h_k, coords_w_k])) # 2, Wh, Ww
coords_flatten_q = torch.flatten(coords_q, 1) # 2, Wh_q*Ww_q
coords_flatten_k = torch.flatten(coords_k, 1) # 2, Wh_k*Ww_k
relative_coords = coords_flatten_q[:, :, None] - coords_flatten_k[:, None, :] # 2, Wh_q*Ww_q, Wh_k*Ww_k
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh_q*Ww_q, Wh_k*Ww_k, 2
relative_coords[:, :, 0] += k_windows[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += k_windows[1] - 1
relative_coords[:, :, 0] *= (q_windows[1] + k_windows[1]) - 1
relative_position_index = relative_coords.sum(-1) # Wh_q*Ww_q, Wh_k*Ww_k
return relative_position_index
def get_relative_position_index3d(q_windows, k_windows, num_clips):
"""
Args:
q_windows: tuple (query_window_height, query_window_width)
k_windows: tuple (key_window_height, key_window_width)
Returns:
relative_position_index: query_window_height*query_window_width, key_window_height*key_window_width
"""
# get pair-wise relative position index for each token inside the window
coords_d_q = torch.arange(num_clips)
coords_h_q = torch.arange(q_windows[0])
coords_w_q = torch.arange(q_windows[1])
coords_q = torch.stack(torch.meshgrid([coords_d_q, coords_h_q, coords_w_q])) # 2, Wh_q, Ww_q
coords_d_k = torch.arange(num_clips)
coords_h_k = torch.arange(k_windows[0])
coords_w_k = torch.arange(k_windows[1])
coords_k = torch.stack(torch.meshgrid([coords_d_k, coords_h_k, coords_w_k])) # 2, Wh, Ww
coords_flatten_q = torch.flatten(coords_q, 1) # 2, Wh_q*Ww_q
coords_flatten_k = torch.flatten(coords_k, 1) # 2, Wh_k*Ww_k
relative_coords = coords_flatten_q[:, :, None] - coords_flatten_k[:, None, :] # 2, Wh_q*Ww_q, Wh_k*Ww_k
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh_q*Ww_q, Wh_k*Ww_k, 2
relative_coords[:, :, 0] += num_clips - 1 # shift to start from 0
relative_coords[:, :, 1] += k_windows[0] - 1
relative_coords[:, :, 2] += k_windows[1] - 1
relative_coords[:, :, 0] *= (q_windows[0] + k_windows[0] - 1)*(q_windows[1] + k_windows[1] - 1)
relative_coords[:, :, 1] *= (q_windows[1] + k_windows[1] - 1)
relative_position_index = relative_coords.sum(-1) # Wh_q*Ww_q, Wh_k*Ww_k
return relative_position_index
class WindowAttention3d3(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
Args:
dim (int): Number of input channels.
expand_size (int): The expand size at focal level 1.
window_size (tuple[int]): The height and width of the window.
focal_window (int): Focal region size.
focal_level (int): Focal attention level.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pool_method (str): window pooling method. Default: none
"""
def __init__(self, dim, expand_size, window_size, focal_window, focal_level, num_heads,
qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., pool_method="none", focal_l_clips=[7,1,2], focal_kernel_clips=[7,5,3]):
super().__init__()
self.dim = dim
self.expand_size = expand_size
self.window_size = window_size # Wh, Ww
self.pool_method = pool_method
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.focal_level = focal_level
self.focal_window = focal_window
# define a parameter table of relative position bias for each window
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
num_clips=4
# # define a parameter table of relative position bias
# self.relative_position_bias_table = nn.Parameter(
# torch.zeros((2 * num_clips - 1) * (2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
# # get pair-wise relative position index for each token inside the window
# coords_d = torch.arange(num_clips)
# coords_h = torch.arange(self.window_size[0])
# coords_w = torch.arange(self.window_size[1])
# coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww
# coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww
# relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww
# relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3
# relative_coords[:, :, 0] += num_clips - 1 # shift to start from 0
# relative_coords[:, :, 1] += self.window_size[0] - 1
# relative_coords[:, :, 2] += self.window_size[1] - 1
# relative_coords[:, :, 0] *= (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1)
# relative_coords[:, :, 1] *= (2 * self.window_size[1] - 1)
# relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww
# self.register_buffer("relative_position_index", relative_position_index)
if self.expand_size > 0 and focal_level > 0:
# define a parameter table of position bias between window and its fine-grained surroundings
self.window_size_of_key = self.window_size[0] * self.window_size[1] if self.expand_size == 0 else \
(4 * self.window_size[0] * self.window_size[1] - 4 * (self.window_size[0] - self.expand_size) * (self.window_size[0] - self.expand_size))
self.relative_position_bias_table_to_neighbors = nn.Parameter(
torch.zeros(1, num_heads, self.window_size[0] * self.window_size[1], self.window_size_of_key)) # Wh*Ww, nH, nSurrounding
trunc_normal_(self.relative_position_bias_table_to_neighbors, std=.02)
# get mask for rolled k and rolled v
mask_tl = torch.ones(self.window_size[0], self.window_size[1]); mask_tl[:-self.expand_size, :-self.expand_size] = 0
mask_tr = torch.ones(self.window_size[0], self.window_size[1]); mask_tr[:-self.expand_size, self.expand_size:] = 0
mask_bl = torch.ones(self.window_size[0], self.window_size[1]); mask_bl[self.expand_size:, :-self.expand_size] = 0
mask_br = torch.ones(self.window_size[0], self.window_size[1]); mask_br[self.expand_size:, self.expand_size:] = 0
mask_rolled = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), 0).flatten(0)
self.register_buffer("valid_ind_rolled", mask_rolled.nonzero().view(-1))
if pool_method != "none" and focal_level > 1:
#self.relative_position_bias_table_to_windows = nn.ParameterList()
#self.relative_position_bias_table_to_windows_clips = nn.ParameterList()
#self.register_parameter('relative_position_bias_table_to_windows',[])
#self.register_parameter('relative_position_bias_table_to_windows_clips',[])
self.unfolds = nn.ModuleList()
self.unfolds_clips=nn.ModuleList()
# build relative position bias between local patch and pooled windows
for k in range(focal_level-1):
stride = 2**k
kernel_size = 2*(self.focal_window // 2) + 2**k + (2**k-1)
# define unfolding operations
self.unfolds += [nn.Unfold(
kernel_size=(kernel_size, kernel_size),
stride=stride, padding=kernel_size // 2)
]
# define relative position bias table
relative_position_bias_table_to_windows = nn.Parameter(
torch.zeros(
self.num_heads,
(self.window_size[0] + self.focal_window + 2**k - 2) * (self.window_size[1] + self.focal_window + 2**k - 2),
)
)
trunc_normal_(relative_position_bias_table_to_windows, std=.02)
#self.relative_position_bias_table_to_windows.append(relative_position_bias_table_to_windows)
self.register_parameter('relative_position_bias_table_to_windows_{}'.format(k),relative_position_bias_table_to_windows)
# define relative position bias index
relative_position_index_k = get_relative_position_index(self.window_size, to_2tuple(self.focal_window + 2**k - 1))
# relative_position_index_k = get_relative_position_index3d(self.window_size, to_2tuple(self.focal_window + 2**k - 1), num_clips)
self.register_buffer("relative_position_index_{}".format(k), relative_position_index_k)
# define unfolding index for focal_level > 0
if k > 0:
mask = torch.zeros(kernel_size, kernel_size); mask[(2**k)-1:, (2**k)-1:] = 1
self.register_buffer("valid_ind_unfold_{}".format(k), mask.flatten(0).nonzero().view(-1))
for k in range(len(focal_l_clips)):
# kernel_size=focal_kernel_clips[k]
focal_l_big_flag=False
if focal_l_clips[k]>self.window_size[0]:
stride=1
padding=0
kernel_size=focal_kernel_clips[k]
kernel_size_true=kernel_size
focal_l_big_flag=True
# stride=math.ceil(self.window_size/focal_l_clips[k])
# padding=(kernel_size-stride)/2
else:
stride = focal_l_clips[k]
# kernel_size
# kernel_size = 2*(focal_kernel_clips[k]// 2) + 2**focal_l_clips[k] + (2**focal_l_clips[k]-1)
kernel_size = focal_kernel_clips[k] ## kernel_size must be jishu
assert kernel_size%2==1
padding=kernel_size // 2
# kernel_size_true=focal_kernel_clips[k]+2**focal_l_clips[k]-1
kernel_size_true=kernel_size
# stride=math.ceil(self.window_size/focal_l_clips[k])
self.unfolds_clips += [nn.Unfold(
kernel_size=(kernel_size, kernel_size),
stride=stride,
padding=padding)
]
relative_position_bias_table_to_windows = nn.Parameter(
torch.zeros(
self.num_heads,
(self.window_size[0] + kernel_size_true - 1) * (self.window_size[0] + kernel_size_true - 1),
)
)
trunc_normal_(relative_position_bias_table_to_windows, std=.02)
#self.relative_position_bias_table_to_windows_clips.append(relative_position_bias_table_to_windows)
self.register_parameter('relative_position_bias_table_to_windows_clips_{}'.format(k),relative_position_bias_table_to_windows)
relative_position_index_k = get_relative_position_index(self.window_size, to_2tuple(kernel_size_true))
self.register_buffer("relative_position_index_clips_{}".format(k), relative_position_index_k)
# if (not focal_l_big_flag) and focal_l_clips[k]>0:
# mask = torch.zeros(kernel_size, kernel_size); mask[(2**focal_l_clips[k])-1:, (2**focal_l_clips[k])-1:] = 1
# self.register_buffer("valid_ind_unfold_clips_{}".format(k), mask.flatten(0).nonzero().view(-1))
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
self.focal_l_clips=focal_l_clips
self.focal_kernel_clips=focal_kernel_clips
def forward(self, x_all, mask_all=None, batch_size=None, num_clips=None):
"""
Args:
x_all (list[Tensors]): input features at different granularity
mask_all (list[Tensors/None]): masks for input features at different granularity
"""
x = x_all[0][0] #
B0, nH, nW, C = x.shape
# assert B==batch_size*num_clips
assert B0==batch_size
qkv = self.qkv(x).reshape(B0, nH, nW, 3, C).permute(3, 0, 1, 2, 4).contiguous()
q, k, v = qkv[0], qkv[1], qkv[2] # B0, nH, nW, C
# partition q map
# print("x.shape: ", x.shape)
# print("q.shape: ", q.shape) # [4, 126, 126, 256]
(q_windows, k_windows, v_windows) = map(
lambda t: window_partition(t, self.window_size[0]).view(
-1, self.window_size[0] * self.window_size[0], self.num_heads, C // self.num_heads
).transpose(1, 2),
(q, k, v)
)
# q_dim0, q_dim1, q_dim2, q_dim3=q_windows.shape
# q_windows=q_windows.view(batch_size, num_clips, (nH//self.window_size[0])*(nW//self.window_size[1]), q_dim1, q_dim2, q_dim3)
# q_windows=q_windows[:,-1].contiguous().view(-1, q_dim1, q_dim2, q_dim3) # query for the last frame (target frame)
# k_windows.shape [1296, 8, 49, 32]
if self.expand_size > 0 and self.focal_level > 0:
(k_tl, v_tl) = map(
lambda t: torch.roll(t, shifts=(-self.expand_size, -self.expand_size), dims=(1, 2)), (k, v)
)
(k_tr, v_tr) = map(
lambda t: torch.roll(t, shifts=(-self.expand_size, self.expand_size), dims=(1, 2)), (k, v)
)
(k_bl, v_bl) = map(
lambda t: torch.roll(t, shifts=(self.expand_size, -self.expand_size), dims=(1, 2)), (k, v)
)
(k_br, v_br) = map(
lambda t: torch.roll(t, shifts=(self.expand_size, self.expand_size), dims=(1, 2)), (k, v)
)
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map(
lambda t: window_partition(t, self.window_size[0]).view(-1, self.window_size[0] * self.window_size[0], self.num_heads, C // self.num_heads),
(k_tl, k_tr, k_bl, k_br)
)
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map(
lambda t: window_partition(t, self.window_size[0]).view(-1, self.window_size[0] * self.window_size[0], self.num_heads, C // self.num_heads),
(v_tl, v_tr, v_bl, v_br)
)
k_rolled = torch.cat((k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), 1).transpose(1, 2)
v_rolled = torch.cat((v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), 1).transpose(1, 2)
# mask out tokens in current window
# print("self.valid_ind_rolled.shape: ", self.valid_ind_rolled.shape) # [132]
# print("k_rolled.shape: ", k_rolled.shape) # [1296, 8, 196, 32]
k_rolled = k_rolled[:, :, self.valid_ind_rolled]
v_rolled = v_rolled[:, :, self.valid_ind_rolled]
k_rolled = torch.cat((k_windows, k_rolled), 2)
v_rolled = torch.cat((v_windows, v_rolled), 2)
else:
k_rolled = k_windows; v_rolled = v_windows;
# print("k_rolled.shape: ", k_rolled.shape) # [1296, 8, 181, 32]
if self.pool_method != "none" and self.focal_level > 1:
k_pooled = []
v_pooled = []
for k in range(self.focal_level-1):
stride = 2**k
x_window_pooled = x_all[0][k+1] # B0, nWh, nWw, C
nWh, nWw = x_window_pooled.shape[1:3]
# generate mask for pooled windows
# print("x_window_pooled.shape: ", x_window_pooled.shape)
mask = x_window_pooled.new(nWh, nWw).fill_(1)
# print("here: ",x_window_pooled.shape, self.unfolds[k].kernel_size, self.unfolds[k](mask.unsqueeze(0).unsqueeze(1)).shape)
# print(mask.unique())
unfolded_mask = self.unfolds[k](mask.unsqueeze(0).unsqueeze(1)).view(
1, 1, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\
view(nWh*nWw // stride // stride, -1, 1)
if k > 0:
valid_ind_unfold_k = getattr(self, "valid_ind_unfold_{}".format(k))
unfolded_mask = unfolded_mask[:, valid_ind_unfold_k]
# print("unfolded_mask.shape: ", unfolded_mask.shape, unfolded_mask.unique())
x_window_masks = unfolded_mask.flatten(1).unsqueeze(0)
# print((x_window_masks == 0).sum(), (x_window_masks > 0).sum(), x_window_masks.unique())
x_window_masks = x_window_masks.masked_fill(x_window_masks == 0, float(-100.0)).masked_fill(x_window_masks > 0, float(0.0))
# print(x_window_masks.shape)
mask_all[0][k+1] = x_window_masks
# generate k and v for pooled windows
qkv_pooled = self.qkv(x_window_pooled).reshape(B0, nWh, nWw, 3, C).permute(3, 0, 4, 1, 2).contiguous()
k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2] # B0, C, nWh, nWw
(k_pooled_k, v_pooled_k) = map(
lambda t: self.unfolds[k](t).view(
B0, C, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\
view(-1, self.unfolds[k].kernel_size[0]*self.unfolds[k].kernel_size[1], self.num_heads, C // self.num_heads).transpose(1, 2),
(k_pooled_k, v_pooled_k) # (B0 x (nH*nW)) x nHeads x (unfold_wsize x unfold_wsize) x head_dim
)
# print("k_pooled_k.shape: ", k_pooled_k.shape)
# print("valid_ind_unfold_k.shape: ", valid_ind_unfold_k.shape)
if k > 0:
(k_pooled_k, v_pooled_k) = map(
lambda t: t[:, :, valid_ind_unfold_k], (k_pooled_k, v_pooled_k)
)
# print("k_pooled_k.shape: ", k_pooled_k.shape)
k_pooled += [k_pooled_k]
v_pooled += [v_pooled_k]
for k in range(len(self.focal_l_clips)):
focal_l_big_flag=False
if self.focal_l_clips[k]>self.window_size[0]:
stride=1
focal_l_big_flag=True
else:
stride = self.focal_l_clips[k]
# if self.window_size>=focal_l_clips[k]:
# stride=math.ceil(self.window_size/focal_l_clips[k])
# # padding=(kernel_size-stride)/2
# else:
# stride=1
# padding=0
x_window_pooled = x_all[k+1]
nWh, nWw = x_window_pooled.shape[1:3]
mask = x_window_pooled.new(nWh, nWw).fill_(1)
# import pdb; pdb.set_trace()
# print(x_window_pooled.shape, self.unfolds_clips[k].kernel_size, self.unfolds_clips[k](mask.unsqueeze(0).unsqueeze(1)).shape)
unfolded_mask = self.unfolds_clips[k](mask.unsqueeze(0).unsqueeze(1)).view(
1, 1, self.unfolds_clips[k].kernel_size[0], self.unfolds_clips[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\
view(nWh*nWw // stride // stride, -1, 1)
# if (not focal_l_big_flag) and self.focal_l_clips[k]>0:
# valid_ind_unfold_k = getattr(self, "valid_ind_unfold_clips_{}".format(k))
# unfolded_mask = unfolded_mask[:, valid_ind_unfold_k]
# print("unfolded_mask.shape: ", unfolded_mask.shape, unfolded_mask.unique())
x_window_masks = unfolded_mask.flatten(1).unsqueeze(0)
# print((x_window_masks == 0).sum(), (x_window_masks > 0).sum(), x_window_masks.unique())
x_window_masks = x_window_masks.masked_fill(x_window_masks == 0, float(-100.0)).masked_fill(x_window_masks > 0, float(0.0))
# print(x_window_masks.shape)
mask_all[k+1] = x_window_masks
# generate k and v for pooled windows
qkv_pooled = self.qkv(x_window_pooled).reshape(B0, nWh, nWw, 3, C).permute(3, 0, 4, 1, 2).contiguous()
k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2] # B0, C, nWh, nWw
if (not focal_l_big_flag):
(k_pooled_k, v_pooled_k) = map(
lambda t: self.unfolds_clips[k](t).view(
B0, C, self.unfolds_clips[k].kernel_size[0], self.unfolds_clips[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\
view(-1, self.unfolds_clips[k].kernel_size[0]*self.unfolds_clips[k].kernel_size[1], self.num_heads, C // self.num_heads).transpose(1, 2),
(k_pooled_k, v_pooled_k) # (B0 x (nH*nW)) x nHeads x (unfold_wsize x unfold_wsize) x head_dim
)
else:
(k_pooled_k, v_pooled_k) = map(
lambda t: self.unfolds_clips[k](t),
(k_pooled_k, v_pooled_k) # (B0 x (nH*nW)) x nHeads x (unfold_wsize x unfold_wsize) x head_dim
)
LLL=k_pooled_k.size(2)
LLL_h=int(LLL**0.5)
assert LLL_h**2==LLL
k_pooled_k=k_pooled_k.reshape(B0, -1, LLL_h, LLL_h)
v_pooled_k=v_pooled_k.reshape(B0, -1, LLL_h, LLL_h)
# print("k_pooled_k.shape: ", k_pooled_k.shape)
# print("valid_ind_unfold_k.shape: ", valid_ind_unfold_k.shape)
# if (not focal_l_big_flag) and self.focal_l_clips[k]:
# (k_pooled_k, v_pooled_k) = map(
# lambda t: t[:, :, valid_ind_unfold_k], (k_pooled_k, v_pooled_k)
# )
# print("k_pooled_k.shape: ", k_pooled_k.shape)
k_pooled += [k_pooled_k]
v_pooled += [v_pooled_k]
# qkv_pooled = self.qkv(x_window_pooled).reshape(B0, nWh, nWw, 3, C).permute(3, 0, 4, 1, 2).contiguous()
# k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2] # B0, C, nWh, nWw
# (k_pooled_k, v_pooled_k) = map(
# lambda t: self.unfolds[k](t).view(
# B0, C, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(0, 4, 2, 3, 1).contiguous().\
# view(-1, self.unfolds[k].kernel_size[0]*self.unfolds[k].kernel_size[1], self.num_heads, C // self.num_heads).transpose(1, 2),
# (k_pooled_k, v_pooled_k) # (B0 x (nH*nW)) x nHeads x (unfold_wsize x unfold_wsize) x head_dim
# )
# k_pooled += [k_pooled_k]
# v_pooled += [v_pooled_k]
k_all = torch.cat([k_rolled] + k_pooled, 2)
v_all = torch.cat([v_rolled] + v_pooled, 2)
else:
k_all = k_rolled
v_all = v_rolled
N = k_all.shape[-2]
q_windows = q_windows * self.scale
# print(q_windows.shape, k_all.shape, v_all.shape)
# exit()
# k_all_dim0, k_all_dim1, k_all_dim2, k_all_dim3=k_all.shape
# k_all=k_all.contiguous().view(batch_size, num_clips, (nH//self.window_size[0])*(nW//self.window_size[1]),
# k_all_dim1, k_all_dim2, k_all_dim3).permute(0,2,3,4,1,5).contiguous().view(-1, k_all_dim1, k_all_dim2*num_clips, k_all_dim3)
# v_all=v_all.contiguous().view(batch_size, num_clips, (nH//self.window_size[0])*(nW//self.window_size[1]),
# k_all_dim1, k_all_dim2, k_all_dim3).permute(0,2,3,4,1,5).contiguous().view(-1, k_all_dim1, k_all_dim2*num_clips, k_all_dim3)
# print(q_windows.shape, k_all.shape, v_all.shape, k_rolled.shape)
# exit()
attn = (q_windows @ k_all.transpose(-2, -1)) # B0*nW, nHead, window_size*window_size, focal_window_size*focal_window_size
window_area = self.window_size[0] * self.window_size[1]
# window_area_clips= num_clips*self.window_size[0] * self.window_size[1]
window_area_rolled = k_rolled.shape[2]
# add relative position bias for tokens inside window
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
# print(relative_position_bias.shape, attn.shape)
attn[:, :, :window_area, :window_area] = attn[:, :, :window_area, :window_area] + relative_position_bias.unsqueeze(0)
# relative_position_bias = self.relative_position_bias_table[self.relative_position_index[-window_area:, :window_area_clips].reshape(-1)].view(
# window_area, window_area_clips, -1) # Wh*Ww,Wd*Wh*Ww,nH
# relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().view(self.num_heads,window_area,num_clips,window_area
# ).permute(0,1,3,2).contiguous().view(self.num_heads,window_area,window_area_clips).contiguous() # nH, Wh*Ww, Wh*Ww*Wd
# # attn_dim0, attn_dim1, attn_dim2, attn_dim3=attn.shape
# # attn=attn.view(attn_dim0,attn_dim1,attn_dim2,num_clips,-1)
# # print(attn.shape, relative_position_bias.shape)
# attn[:,:,:window_area, :window_area_clips]=attn[:,:,:window_area, :window_area_clips] + relative_position_bias.unsqueeze(0)
# attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N
# add relative position bias for patches inside a window
if self.expand_size > 0 and self.focal_level > 0:
attn[:, :, :window_area, window_area:window_area_rolled] = attn[:, :, :window_area, window_area:window_area_rolled] + self.relative_position_bias_table_to_neighbors
if self.pool_method != "none" and self.focal_level > 1:
# add relative position bias for different windows in an image
offset = window_area_rolled
# print(offset)
for k in range(self.focal_level-1):
# add relative position bias
relative_position_index_k = getattr(self, 'relative_position_index_{}'.format(k))
relative_position_bias_to_windows = getattr(self,'relative_position_bias_table_to_windows_{}'.format(k))[:, relative_position_index_k.view(-1)].view(
-1, self.window_size[0] * self.window_size[1], (self.focal_window+2**k-1)**2,
) # nH, NWh*NWw,focal_region*focal_region
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] = \
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] + relative_position_bias_to_windows.unsqueeze(0)
# add attentional mask
if mask_all[0][k+1] is not None:
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] = \
attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] + \
mask_all[0][k+1][:, :, None, None, :].repeat(attn.shape[0] // mask_all[0][k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[0][k+1].shape[-1])
offset += (self.focal_window+2**k-1)**2
# print(offset)
for k in range(len(self.focal_l_clips)):
focal_l_big_flag=False
if self.focal_l_clips[k]>self.window_size[0]:
stride=1
padding=0
kernel_size=self.focal_kernel_clips[k]
kernel_size_true=kernel_size
focal_l_big_flag=True
# stride=math.ceil(self.window_size/focal_l_clips[k])
# padding=(kernel_size-stride)/2
else:
stride = self.focal_l_clips[k]
# kernel_size
# kernel_size = 2*(self.focal_kernel_clips[k]// 2) + 2**self.focal_l_clips[k] + (2**self.focal_l_clips[k]-1)
kernel_size = self.focal_kernel_clips[k]
padding=kernel_size // 2
# kernel_size_true=self.focal_kernel_clips[k]+2**self.focal_l_clips[k]-1
kernel_size_true=kernel_size
relative_position_index_k = getattr(self, 'relative_position_index_clips_{}'.format(k))
relative_position_bias_to_windows = getattr(self,'relative_position_bias_table_to_windows_clips_{}'.format(k))[:, relative_position_index_k.view(-1)].view(
-1, self.window_size[0] * self.window_size[1], (kernel_size_true)**2,
)
attn[:, :, :window_area, offset:(offset + (kernel_size_true)**2)] = \
attn[:, :, :window_area, offset:(offset + (kernel_size_true)**2)] + relative_position_bias_to_windows.unsqueeze(0)
if mask_all[k+1] is not None:
attn[:, :, :window_area, offset:(offset + (kernel_size_true)**2)] = \
attn[:, :, :window_area, offset:(offset + (kernel_size_true)**2)] + \
mask_all[k+1][:, :, None, None, :].repeat(attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1])
offset += (kernel_size_true)**2
# print(offset)
# relative_position_index_k = getattr(self, 'relative_position_index_{}'.format(k))
# # relative_position_bias_to_windows = self.relative_position_bias_table_to_windows[k][:, relative_position_index_k.view(-1)].view(
# # -1, self.window_size[0] * self.window_size[1], (self.focal_window+2**k-1)**2,
# # ) # nH, NWh*NWw,focal_region*focal_region
# # attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] = \
# # attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] + relative_position_bias_to_windows.unsqueeze(0)
# relative_position_bias_to_windows = self.relative_position_bias_table_to_windows[k][:, relative_position_index_k[-window_area:, :].view(-1)].view(
# -1, self.window_size[0] * self.window_size[1], num_clips*(self.focal_window+2**k-1)**2,
# ).contiguous() # nH, NWh*NWw, num_clips*focal_region*focal_region
# relative_position_bias_to_windows = relative_position_bias_to_windows.view(self.num_heads,
# window_area,num_clips,-1).permute(0,1,3,2).contiguous().view(self.num_heads,window_area,-1)
# attn[:, :, :window_area, offset:(offset + num_clips*(self.focal_window+2**k-1)**2)] = \
# attn[:, :, :window_area, offset:(offset + num_clips*(self.focal_window+2**k-1)**2)] + relative_position_bias_to_windows.unsqueeze(0)
# # add attentional mask
# if mask_all[k+1] is not None:
# # print("inside the mask, be careful 1")
# # attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] = \
# # attn[:, :, :window_area, offset:(offset + (self.focal_window+2**k-1)**2)] + \
# # mask_all[k+1][:, :, None, None, :].repeat(attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1])
# # print("here: ", mask_all[k+1].shape, mask_all[k+1][:, :, None, None, :].shape)
# attn[:, :, :window_area, offset:(offset + num_clips*(self.focal_window+2**k-1)**2)] = \
# attn[:, :, :window_area, offset:(offset + num_clips*(self.focal_window+2**k-1)**2)] + \
# mask_all[k+1][:, :, None, None, :,None].repeat(attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1, num_clips).view(-1, 1, 1, mask_all[k+1].shape[-1]*num_clips)
# # print()
# offset += (self.focal_window+2**k-1)**2
# print("mask_all[0]: ", mask_all[0])
# exit()
if mask_all[0][0] is not None:
print("inside the mask, be careful 0")
nW = mask_all[0].shape[0]
attn = attn.view(attn.shape[0] // nW, nW, self.num_heads, window_area, N)
attn[:, :, :, :, :window_area] = attn[:, :, :, :, :window_area] + mask_all[0][None, :, None, :, :]
attn = attn.view(-1, self.num_heads, window_area, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v_all).transpose(1, 2).reshape(attn.shape[0], window_area, C)
x = self.proj(x)
x = self.proj_drop(x)
# print(x.shape)
# x = x.view(B/num_clips, nH, nW, C )
# exit()
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
def flops(self, N, window_size, unfold_size):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
if self.pool_method != "none" and self.focal_level > 1:
flops += self.num_heads * N * (self.dim // self.num_heads) * (unfold_size * unfold_size)
if self.expand_size > 0 and self.focal_level > 0:
flops += self.num_heads * N * (self.dim // self.num_heads) * ((window_size + 2*self.expand_size)**2-window_size**2)
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
if self.pool_method != "none" and self.focal_level > 1:
flops += self.num_heads * N * (self.dim // self.num_heads) * (unfold_size * unfold_size)
if self.expand_size > 0 and self.focal_level > 0:
flops += self.num_heads * N * (self.dim // self.num_heads) * ((window_size + 2*self.expand_size)**2-window_size**2)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class CffmTransformerBlock3d3(nn.Module):
r""" Focal Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
expand_size (int): expand size at first focal level (finest level).
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
pool_method (str): window pooling method. Default: none, options: [none|fc|conv]
focal_level (int): number of focal levels. Default: 1.
focal_window (int): region size of focal attention. Default: 1
use_layerscale (bool): whether use layer scale for training stability. Default: False
layerscale_value (float): scaling value for layer scale. Default: 1e-4
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, expand_size=0, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_method="none",
focal_level=1, focal_window=1, use_layerscale=False, layerscale_value=1e-4, focal_l_clips=[7,2,4], focal_kernel_clips=[7,5,3]):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.expand_size = expand_size
self.mlp_ratio = mlp_ratio
self.pool_method = pool_method
self.focal_level = focal_level
self.focal_window = focal_window
self.use_layerscale = use_layerscale
self.focal_l_clips=focal_l_clips
self.focal_kernel_clips=focal_kernel_clips
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.expand_size = 0
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.window_size_glo = self.window_size
self.pool_layers = nn.ModuleList()
self.pool_layers_clips = nn.ModuleList()
if self.pool_method != "none":
for k in range(self.focal_level-1):
window_size_glo = math.floor(self.window_size_glo / (2 ** k))
if self.pool_method == "fc":
self.pool_layers.append(nn.Linear(window_size_glo * window_size_glo, 1))
self.pool_layers[-1].weight.data.fill_(1./(window_size_glo * window_size_glo))
self.pool_layers[-1].bias.data.fill_(0)
elif self.pool_method == "conv":
self.pool_layers.append(nn.Conv2d(dim, dim, kernel_size=window_size_glo, stride=window_size_glo, groups=dim))
for k in range(len(focal_l_clips)):
# window_size_glo = math.floor(self.window_size_glo / (2 ** k))
if focal_l_clips[k]>self.window_size:
window_size_glo = focal_l_clips[k]
else:
window_size_glo = math.floor(self.window_size_glo / (focal_l_clips[k]))
# window_size_glo = focal_l_clips[k]
if self.pool_method == "fc":
self.pool_layers_clips.append(nn.Linear(window_size_glo * window_size_glo, 1))
self.pool_layers_clips[-1].weight.data.fill_(1./(window_size_glo * window_size_glo))
self.pool_layers_clips[-1].bias.data.fill_(0)
elif self.pool_method == "conv":
self.pool_layers_clips.append(nn.Conv2d(dim, dim, kernel_size=window_size_glo, stride=window_size_glo, groups=dim))
self.norm1 = norm_layer(dim)
self.attn = WindowAttention3d3(
dim, expand_size=self.expand_size, window_size=to_2tuple(self.window_size),
focal_window=focal_window, focal_level=focal_level, num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, pool_method=pool_method, focal_l_clips=focal_l_clips, focal_kernel_clips=focal_kernel_clips)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
# print("******self.shift_size: ", self.shift_size)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
# print("here mask none")
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
if self.use_layerscale:
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
def forward(self, x):
H0, W0 = self.input_resolution
# B, L, C = x.shape
B0, D0, H0, W0, C = x.shape
shortcut = x
# assert L == H * W, "input feature has wrong size"
x=x.reshape(B0*D0,H0,W0,C).reshape(B0*D0,H0*W0,C)
x = self.norm1(x)
x = x.reshape(B0*D0, H0, W0, C)
# print("here")
# exit()
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W0 % self.window_size) % self.window_size
pad_b = (self.window_size - H0 % self.window_size) % self.window_size
if pad_r > 0 or pad_b > 0:
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
B, H, W, C = x.shape ## B=B0*D0
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# print("shifted_x.shape: ", shifted_x.shape)
shifted_x=shifted_x.view(B0,D0,H,W,C)
x_windows_all = [shifted_x[:,-1]]
x_windows_all_clips=[]
x_window_masks_all = [self.attn_mask]
x_window_masks_all_clips=[]
if self.focal_level > 1 and self.pool_method != "none":
# if we add coarser granularity and the pool method is not none
# pooling_index=0
for k in range(self.focal_level-1):
window_size_glo = math.floor(self.window_size_glo / (2 ** k))
pooled_h = math.ceil(H / self.window_size) * (2 ** k)
pooled_w = math.ceil(W / self.window_size) * (2 ** k)
H_pool = pooled_h * window_size_glo
W_pool = pooled_w * window_size_glo
x_level_k = shifted_x[:,-1]
# trim or pad shifted_x depending on the required size
if H > H_pool:
trim_t = (H - H_pool) // 2
trim_b = H - H_pool - trim_t
x_level_k = x_level_k[:, trim_t:-trim_b]
elif H < H_pool:
pad_t = (H_pool - H) // 2
pad_b = H_pool - H - pad_t
x_level_k = F.pad(x_level_k, (0,0,0,0,pad_t,pad_b))
if W > W_pool:
trim_l = (W - W_pool) // 2
trim_r = W - W_pool - trim_l
x_level_k = x_level_k[:, :, trim_l:-trim_r]
elif W < W_pool:
pad_l = (W_pool - W) // 2
pad_r = W_pool - W - pad_l
x_level_k = F.pad(x_level_k, (0,0,pad_l,pad_r))
x_windows_noreshape = window_partition_noreshape(x_level_k.contiguous(), window_size_glo) # B0, nw, nw, window_size, window_size, C
nWh, nWw = x_windows_noreshape.shape[1:3]
if self.pool_method == "mean":
x_windows_pooled = x_windows_noreshape.mean([3, 4]) # B0, nWh, nWw, C
elif self.pool_method == "max":
x_windows_pooled = x_windows_noreshape.max(-2)[0].max(-2)[0].view(B0, nWh, nWw, C) # B0, nWh, nWw, C
elif self.pool_method == "fc":
x_windows_noreshape = x_windows_noreshape.view(B0, nWh, nWw, window_size_glo*window_size_glo, C).transpose(3, 4) # B0, nWh, nWw, C, wsize**2
x_windows_pooled = self.pool_layers[k](x_windows_noreshape).flatten(-2) # B0, nWh, nWw, C
elif self.pool_method == "conv":
x_windows_noreshape = x_windows_noreshape.view(-1, window_size_glo, window_size_glo, C).permute(0, 3, 1, 2).contiguous() # B0 * nw * nw, C, wsize, wsize
x_windows_pooled = self.pool_layers[k](x_windows_noreshape).view(B0, nWh, nWw, C) # B0, nWh, nWw, C
x_windows_all += [x_windows_pooled]
# print(x_windows_pooled.shape)
x_window_masks_all += [None]
# pooling_index=pooling_index+1
x_windows_all_clips += [x_windows_all]
x_window_masks_all_clips += [x_window_masks_all]
for k in range(len(self.focal_l_clips)):
# window_size_glo = math.floor(self.window_size_glo / (2 ** k))
# pooled_h = math.ceil(H / self.window_size) * (2 ** k)
# pooled_w = math.ceil(W / self.window_size) * (2 ** k)
# window_size_glo=focal_l_clips[k]
if self.focal_l_clips[k]>self.window_size:
window_size_glo = self.focal_l_clips[k]
else:
window_size_glo = math.floor(self.window_size_glo / (self.focal_l_clips[k]))
# pooled_h = math.ceil(H / window_size_glo)
# pooled_w = math.ceil(W / window_size_glo)
pooled_h = math.ceil(H / self.window_size) * (self.focal_l_clips[k])
pooled_w = math.ceil(W / self.window_size) * (self.focal_l_clips[k])
H_pool = pooled_h * window_size_glo
W_pool = pooled_w * window_size_glo
x_level_k = shifted_x[:,k]
# print(x_level_k.shape, H_pool, W_pool)