-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster.py
58 lines (46 loc) · 1.97 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# coding=utf-8
import sklearn.cluster
import numpy as np
import sys
def hierarchicalClustering(fund_data):
fundsData=[]
for i in range(len(fund_data)):
fundsData.append(fund_data[i][1:])
fundsData=np.array(fundsData)
clusters=sklearn.cluster.AgglomerativeClustering(n_clusters=1, affinity='euclidean', memory=None, connectivity=None, linkage='ward')
orderIndex=[]
for i in range(len(clusters.fit(fundsData).children_)):
for j in range(len(clusters.fit(fundsData).children_[i])):
if(clusters.fit(fundsData).children_[i][j]<len(fundsData)):
orderIndex.append(clusters.fit(fundsData).children_[i][j])
fundOrder=[]
factorOrder=[]
for i in range(len(fund_data)):
fundOrder.append(fund_data[orderIndex[i]][0])
j=1
while(j<len(fund_data[0])):
curFactorOrder=[]
for i in range(len(fund_data)):
curFactorOrder.append(fund_data[orderIndex[i]][j])
factorOrder.append(curFactorOrder)
j+=1
print ' '.join(fundOrder)
for i in range(1,len(factorOrder)):
print ' '.join(str(f) for f in factorOrder[i])
fund_data=[]
#读取个数
n=int(sys.argv[1])
#读取每个代码以及后面的10个参数
for i in range(n):
data=[]
data.append(str(sys.argv[2+i*11]))
for j in range(11):
data.append(float(sys.argv[2+i*11+j]))
fund_data.append(data)
# fund_data.append(['000003',-0.0719,0.069663935,0.022509314])#基金数据,第一个为基金代码,后面为要聚类的数据(传来的10个风格因子,现在设的只是样例数据)
# fund_data.append(['000004',0.0177,0.019897408,0.006429108])
# fund_data.append(['000007',0.0102,0.10581899,0.034191477])
# fund_data.append(['000017',-0.0063,0.012374808,0.00399846])
# fund_data.append(['000024',0.0538,0.070886282,0.02290427])
# fund_data.append(['000025',0.163,0.084955376,0.027450175])
hierarchicalClustering(fund_data) #层次聚类