-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune.py
91 lines (77 loc) · 3.59 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from datasets import DatasetDict, load_dataset, concatenate_datasets
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
from trl import SFTTrainer
def train(model, tokenizer, chat_dataset, new_model_name):
def format(examples):
return [tokenizer.apply_chat_template(conversation, tokenize=False)
for conversation in examples['messages_nl']]
per_device_train_batch_size = 2
gradient_accumulation_steps = 8
steps_per_epoch = len(chat_dataset['train_sft'])\
// (torch.cuda.device_count() * per_device_train_batch_size * gradient_accumulation_steps)
eval_steps = steps_per_epoch // 5
training_args = TrainingArguments(
optim='adamw_bnb_8bit',
num_train_epochs=3,
learning_rate=1e-5,
lr_scheduler_type='cosine',
warmup_ratio=0.1,
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
evaluation_strategy='steps',
eval_steps=eval_steps,
save_strategy='epoch',
bf16=True,
output_dir='/tmp/geitje/output',
report_to=["tensorboard", 'wandb'],
logging_steps=1,
logging_first_step=True,
hub_model_id=new_model_name,
push_to_hub=True,
hub_private_repo=True,
hub_strategy='all_checkpoints',
)
trainer = SFTTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
max_seq_length=8192,
train_dataset=chat_dataset['train_sft'],
eval_dataset=chat_dataset['test_sft'],
formatting_func=format,
neftune_noise_alpha=5,
)
trainer.train()
trainer.push_to_hub()
if __name__ == '__main__':
basemodel_name = 'Rijgersberg/GEITje-7B'
model = AutoModelForCausalLM.from_pretrained(basemodel_name, torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True, use_flash_attention_2=True,
device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(basemodel_name)
# Mistral 7B is missing a padding token by default, so we need to assign
# another token to the padding job during training.
# Unfortunately we cannot use the </s> token, because we need the model to
# learn to output </s> at the end of its turn, so that we can stop generating
# when it emits it. If we were to also use it as the padding token,
# any loss computed on </s> would then be discarded, nothing would be learned
# and the model would never stop generating.
# Trust me, I learned this the hard way ;).
# Therefore, we take the least bad alternative action and assign
# the rarely used <UNK> token to the padding role.
tokenizer.pad_token = tokenizer.unk_token
model.config.pad_token_id = tokenizer.unk_token_id
no_robots_nl = load_dataset('Rijgersberg/no_robots_nl')
ultrachat_nl = load_dataset('Rijgersberg/ultrachat_10k_nl')
chat_dataset = DatasetDict({
'train_sft': concatenate_datasets([no_robots_nl['train_sft'],
ultrachat_nl['train_sft']]).shuffle(seed=42),
'test_sft': concatenate_datasets([no_robots_nl['test_sft'],
ultrachat_nl['test_sft']]).shuffle(seed=42),
})
chat_dataset = chat_dataset.filter(lambda row: all(turn['content'] != '<TRANSLATION FAILED>'
for turn in row['messages_nl']))
train(model, tokenizer, chat_dataset,
new_model_name='Rijgersberg/GEITje-7B-chat')