-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretrain.py
90 lines (77 loc) · 3.27 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import datasets
import torch
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling, \
AutoModelForCausalLM, AutoTokenizer
from util import pack
def train(base_model, context_length, dataset_name, new_model_name):
model = AutoModelForCausalLM.from_pretrained(base_model,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attention_2=True)
tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast=False)
# fix padding (mostly for inference, later for finetuning changed to unk_token_id)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# data
dataset = datasets.load_dataset(dataset_name)
# it is customary to train LLMs by fully "packing" the context length with
# fragments of one or more documents
packed_train_dataset = datasets.IterableDataset.from_generator(
generator=pack,
gen_kwargs={'dataset': dataset['train'],
'tokenizer': tokenizer,
'context_length': context_length})
packed_validation_dataset = datasets.IterableDataset.from_generator(
generator=pack,
gen_kwargs={'dataset': dataset['validation'],
'tokenizer': tokenizer,
'context_length': context_length})
per_device_train_batch_size = 2
gradient_accumulation_steps = 8
training_steps = 10_000_000_000 // (torch.cuda.device_count() * per_device_train_batch_size *
gradient_accumulation_steps * context_length)
save_steps = training_steps // (6 * 4) + 1
eval_steps = training_steps // (6 * 8) + 1
# training
training_args = TrainingArguments(
max_steps=training_steps,
optim='adamw_bnb_8bit',
learning_rate=2e-5,
lr_scheduler_type='cosine',
warmup_steps=int(training_steps * 0.1),
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=True,
evaluation_strategy='steps',
eval_steps=eval_steps,
per_device_eval_batch_size=per_device_train_batch_size,
eval_accumulation_steps=gradient_accumulation_steps,
save_strategy='steps',
save_steps=save_steps,
bf16=True,
output_dir='/tmp/geitje/output',
report_to=["tensorboard", 'wandb'],
logging_steps=1,
logging_first_step=True,
hub_model_id=new_model_name,
hub_private_repo=True,
push_to_hub=True,
hub_strategy='all_checkpoints',
)
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
train_dataset=packed_train_dataset,
eval_dataset=packed_validation_dataset,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
)
trainer.train()
trainer.push_to_hub()
if __name__ == '__main__':
train(
base_model='mistralai/Mistral-7B-v0.1',
context_length=8192,
dataset_name='Rijgersberg/GEITJE-pretrain-10b',
new_model_name='Rijgersberg/GEITje-7B',
)