-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
253 lines (227 loc) · 9.99 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import pickle
import logging
import pandas as pd
import numpy as np
import torch
from jieba import posseg
from pypinyin import pinyin, Style
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from torch import optim
from tqdm import tqdm
from crf import CRF
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger('RhythmPredictor')
class RhythmPredictor(object):
"""A simple rhythm predict model."""
NUMERIC_COLUMNS = ['num_left', 'num_right', 'size_left', 'size_right',
'len_left', 'len_right']
CATEGORICAL_COLUMNS = ['pos_left_2', 'pos_left', 'pos_right', 'pos_right_2',
'tone_left', 'tone_right']
ALL_COLUMNS = NUMERIC_COLUMNS + CATEGORICAL_COLUMNS
RHYTHM_TAGS = ['#0', '#1', '#2', '#3', '#4']
PREDICT_WITH_CRF = False
def __init__(self, **kwargs):
self._forest = RandomForestClassifier(**kwargs)
self._crf = CRF(self.RHYTHM_TAGS)
self._transformer = None
self._opt = None
def fit(self, features: pd.DataFrame, tags: np.ndarray,
**kwargs) -> 'RhythmPredictor':
"""Training classifier using extracted features from sentences.
Args:
features: unencoded dataframe extracted from sentences
tags: tags corresponds to each feature row
kwargs: additional parameters for fitting
"""
logger.info('Encoding feartures...')
x = self.encode_features(features, is_train=True)
# Use masks to train different classifiers
logger.info('Building classifier for tags...')
self._forest.fit(x, tags, **kwargs)
return self
def fit_crf(self, feat_as_sentence: list, tag_as_sentence: list,
**kwargs) -> 'RhythmPredictor':
"""Training CRF model using extracted features from a sentence.
Args:
feat_as_sentence: list of features in each sentence
tag_as_sentence: list of tags in each sentence
kwargs: training parameters for crf
"""
# Encode features first
encoded_feats = []
logger.info('Encoding features...')
progress_bar = tqdm(total=len(feat_as_sentence))
for feats in feat_as_sentence:
encoded_feats.append(self.encode_features(
pd.DataFrame(feats, columns=self.ALL_COLUMNS)))
progress_bar.update(1)
progress_bar.close()
# Fit for several epoches
epoches = kwargs.get('epoches', 10)
loss_thres = kwargs.get('loss_threshold', 1e-2)
self._crf = CRF(self.RHYTHM_TAGS)
self._opt = optim.Adam(params=self._crf.parameters(),
lr=kwargs.get('lr', 0.03),
weight_decay=kwargs.get('weight_decay', 1e-3))
logger.info('Training CRF layer:')
prev_loss = 0.
for e in range(1, epoches + 1):
total_loss = 0.
logger.info('Epoch {}:'.format(e))
progress_bar = tqdm(total=len(tag_as_sentence))
for feats, tags in zip(encoded_feats, tag_as_sentence):
if len(tags) > 0:
# CRF is only applicable to sentences with 2 or more tags
scores = self._forest.predict_proba(feats)
# Training ...
# Clear grad history for each batch
self._crf.zero_grad()
# Calclate loss and backward propagation
loss = self._crf.neg_log_likelihood(scores, tags)
total_loss += loss.item()
if loss.requires_grad:
loss.backward()
# Update parameters, once for a batch
self._opt.step()
progress_bar.update(1)
progress_bar.close()
logger.info('Total loss for epoch {}: {}'.format(e, total_loss))
if np.abs(total_loss - prev_loss) <= loss_thres:
logger.info('Loss converged.')
break
prev_loss = total_loss
return self
def predict_words(self, words: list, pos_list: list = None) -> list:
"""Predict rhythms by words split from a sentence.
We first extract features for seperations between each pair of words,
and encode string features to integer ones, then use decision tree
model to predict tags.
Args:
words: cut from a sentence.
pos_list: list of POS of words.
Returns:
tags: predicted tag list of rhythm.
"""
feats = self.extract_features(words, pos_list)
# Predict rhythm tags
return self.predict(feats)
def predict(self, features: list) -> list:
"""Predict rhythms by features in a dataframe.
Args:
features: Unencoded features, shape = (num_seperations, num_features)
Returns:
tags: predicted tag list of rhythm.
"""
# Encode string features
features = pd.DataFrame(features, columns=self.ALL_COLUMNS)
x = self.encode_features(features, is_train=False)
# Predict by all trees
emit_scores = self._forest.predict_proba(x)
if self.PREDICT_WITH_CRF:
# Aggregate results using CRF
return self._crf.forward(emit_scores)
else:
# Aggregate results by choosing tag with maximum probability
tag_indices = emit_scores.argmax(axis=1)
tags = [self.RHYTHM_TAGS[idx] for idx in tag_indices]
return tags
@staticmethod
def extract_features(words: list, pos_list: list = None) -> list:
"""Extract features for each seperation and form a dataframe
Features include: num_left, num_right, size_left, size_right, len_left,
len_right, pos_left_2, pos_left, pos_right,
pos_right_2, tone_left, tone_right.
Args:
words: list of words cut from a sentence.
pos_list: list of POS of each word.
Returns:
feats: list of features of each seperation.
"""
def extract_pinyin(char: str) -> tuple:
# Extract pinyin information from a character
ph = list(pinyin(char, style=Style.TONE3))[0][0]
if ph[-1].isdigit():
tone, ph = ph[-1], ph[:-1]
else:
tone = '5'
return ph, tone
# Extract features from cuts in a sentence
feats = []
# Get POS
if not pos_list:
pos_list = []
for word in words:
# POS of the first tokenized word in original word sequence
_, pos = list(posseg.cut(word))[0]
pos_list.append(pos)
# Iterates on all cut between 2 words
num_cut = len(words) - 1
for index in range(num_cut):
# Numeric features
# Number of words, size of left / right part string
num_left, num_right = index + 1, num_cut - index
size_left, size_right = len(words[index]), len(words[index + 1])
len_left, len_right = sum(map(len, words[:index])), sum(
map(len, words[index + 1:]))
# Categorical features
# POS information
pos_left_2 = pos_list[index - 1] if index > 0 else 'BEG'
pos_right_2 = pos_list[index + 2] if index < num_cut - 1 else 'END'
pos_left, pos_right = pos_list[index], pos_list[index + 1]
# Pinyin information
_, tone_left = extract_pinyin(words[index][-1])
_, tone_right = extract_pinyin(words[index + 1][0])
# Summarize all information
feat = [num_left, num_right, size_left, size_right, len_left,
len_right, pos_left_2, pos_left, pos_right,
pos_right_2, tone_left, tone_right]
feats.append(feat)
return feats
def encode_features(self, features: pd.DataFrame,
is_train: bool = False) -> pd.DataFrame:
"""Encode string-typed features into integer ones.
Encode is based on a copy of original feature dataframe.
Args:
features: original features extracted from seperations.
is_train: whether is training (generating and save new encoders), or predicting (using old encoders).
Returns:
encoded: encoded features.
"""
encoded = features
# Deal with unseen tags.
if is_train:
# Deal with columns
transformer = ColumnTransformer(transformers=[
('numeric', 'passthrough', self.NUMERIC_COLUMNS),
('categorical', OneHotEncoder(handle_unknown='ignore'),
self.CATEGORICAL_COLUMNS)
])
encoded = transformer.fit_transform(encoded)
self._transformer = transformer
else:
encoded = self._transformer.transform(encoded)
return encoded
def load(self, tree_path: str = None,
crf_path: str = None) -> 'RhythmPredictor':
# Load encoders and tree models from pickle file, and also CRF model.
if tree_path is not None:
with open(tree_path, 'rb') as f:
model_dict = pickle.load(f)
self._forest = model_dict['forest']
self._transformer = model_dict['transformer']
if crf_path is not None:
self._crf.load_state_dict(torch.load(crf_path))
return self
def dump(self, tree_path: str = None,
crf_path: str = None) -> 'RhythmPredictor':
# Dump encoders and tree models into pickle file, and also CRF model.
if tree_path is not None:
tree_dict = {'forest': self._forest,
'transformer': self._transformer}
with open(tree_path, 'wb') as f:
pickle.dump(tree_dict, f)
if crf_path is not None:
torch.save(self._crf.state_dict(), crf_path)
return self