-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommands.txt
executable file
·538 lines (414 loc) · 22.9 KB
/
commands.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
conda activate mimic
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
python3 imitate_episodes.py \
--task_name sim_transfer_cube_human \
--ckpt_dir /scr/tonyzhao/train_logs/vq_test \
--policy_class ACT --kl_weight 10 --chunk_size 100 \
--hidden_dim 512 --batch_size 8 --dim_feedforward 3200 \
--num_epochs 10000 --lr 1e-5 --seed 0 --vq
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name all \
--ckpt_dir /scr/tonyzhao/train_logs/pretrain_all \
--policy_class ACT --kl_weight 10 --chunk_size 50 \
--hidden_dim 512 --batch_size 24 --dim_feedforward 3200 --num_epochs 5000 --lr 1e-4 --seed 0
#### NOTE to reproduce this experiment, uncomment the sim data filtering in utils.py
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name all \
--ckpt_dir /scr/tonyzhao/train_logs/pretrain_all \
--policy_class ACT --kl_weight 10 --chunk_size 50 \
--hidden_dim 512 --batch_size 24 --dim_feedforward 3200 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 10000000000 --validate_every 2000 --save_every 5000
# generate mirrored data
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus
python3 record_sim_episodes.py --task_name sim_transfer_cube_scripted_mirror --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted_mirror --num_episodes 50
python3 postprocess_episodes.py --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted_mirror --num_episodes 50
# the sim_transfer_cube_scripted_mirror will have 100 episodes
# I then copy the whole dir to sim_transfer_cube_scripted then removed all mirrored episodes
# this gives sim_transfer_cube_scripted_mirror (100 episodes) and sim_transfer_cube_scripted (50 episodes)
# visualize the original data
python3 visualize_episodes.py --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted_mirror --episode_idx 0
# visualize the artificially mirrored data
python3 visualize_episodes.py --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted_mirror --episode_idx 0 --ismirror
# sanity check
# replay the mirrored data action in the original env
python3 replay_episodes.py --dataset_path /scr/tonyzhao/datasets/sim_transfer_cube_scripted_mirror/mirror_episode_0.hdf5
# replay the original data action in the original env
python3 replay_episodes.py --dataset_path /scr/tonyzhao/datasets/sim_transfer_cube_scripted_mirror/episode_0.hdf5
# launch experiment on original data
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted \
--policy_class ACT --kl_weight 10 --chunk_size 50 \
--hidden_dim 512 --batch_size 12 --dim_feedforward 3200 --lr 1e-5 --seed 0 \
--num_steps 100000 --eval_every 2000 --validate_every 2000 --save_every 2000 --no_encoder
# launch experiment on all data
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted_mirror \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_mirror \
--policy_class ACT --kl_weight 10 --chunk_size 50 \
--hidden_dim 512 --batch_size 12 --dim_feedforward 3200 --lr 1e-5 --seed 0 \
--num_steps 100000 --eval_every 2000 --validate_every 2000 --save_every 2000 --no_encoder
####### DIFFUSION POLICY
- first install https://github.com/ARISE-Initiative/robomimic/tree/r2d2 (note the r2d2 branch)
- on top of it pip install the current repo requirements
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_0 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-5 --seed 0 \
--num_steps 100000 --eval_every 2000 --validate_every 2000 --save_every 2000
NOTE JUSTIN: Terminal command in history:
python3 imitate_episodes.py --task_name sim_transfer_cube_scripted
--ckpt_dir /home/justin/Desktop/sim_transfer_cube_scripted --policy_class Diffusion
--chunk_size 16 --batch_size 32 --lr 1e-4 --seed 0 --num_steps 1000
--eval_every 200 --validate_every 200 --save_every 200 --onscreen_render
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_1 \
--policy_class Diffusion --chunk_size 16 \
--batch_size 32 --lr 1e-5 --seed 0 \
--num_steps 100000 --eval_every 2000 --validate_every 2000 --save_every 2000
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py --task_name sim_transfer_cube_scripted --ckpt_dir /home/justin/Desktop/sim_transfer_cube_scripted --policy_class Diffusion --chunk_size 16 --batch_size 32 --lr 1e-5 --seed 0 --num_steps 100000 --eval_every 2000 --validate_every 2000 --save_every 2000 --onscreen_render --eval
# above are all 100 train diffusion steps, 1e-5
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_2_50step_1e-4 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 100000 --eval_every 2000 --validate_every 2000 --save_every 2000
# Dec 10
######################## more diffusion ########################
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_3_chunk64 \
--policy_class Diffusion --chunk_size 64 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 200000 --eval_every 4000 --validate_every 4000 --save_every 4000
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_4_regressionTest \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 200000 --eval_every 6000 --validate_every 6000 --save_every 6000
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_5_noEMA \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 200000 --eval_every 6000 --validate_every 6000 --save_every 6000
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/cube_scripted_diffusion_sweep_6_noEMA_seed1 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 1 \
--num_steps 200000 --eval_every 6000 --validate_every 6000 --save_every 6000
###### Diffusion Real ######
## deploy
python3 imitate_episodes.py --task_name aloha_mobile_wipe_wine --ckpt_dir /home/mobile-aloha/interbotix_ws/src/act/ckpts/wipe_wine_diffusion_augmentation_seed0/ --policy_class Diffusion --chunk_size 32 --batch_size 32 --lr 1e-4 --seed 0 --num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000 --eval
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_diffusion_seed0 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
## Cotrain
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine_cotrain \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_cotrain_diffusion_seed0 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
# train no cotrain again with augmentations
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_diffusion_augmentation_seed0 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
## Cotrain with augmentations
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine_cotrain \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_cotrain_diffusion_augmentation_seed0 \
--policy_class Diffusion --chunk_size 32 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
# try chunk size 64, no cotrain
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_diffusion_augmentation_chunk64_seed0 \
--policy_class Diffusion --chunk_size 64 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
# chunk 64 with cotrain
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine_cotrain \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_cotrain_diffusion_augmentation_chunk64_seed0 \
--policy_class Diffusion --chunk_size 64 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
# chunk 64 with cotrain + EMA
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=0 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine_2_cotrain \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_cotrain_diffusion_augmentation_chunk64_ema_seed0 \
--policy_class Diffusion --chunk_size 64 \
--batch_size 32 --lr 1e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
# chunk 64 with cotrain + EMA + 3e-4
conda activate mobile
export MUJOCO_GL=egl
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 imitate_episodes.py \
--task_name aloha_mobile_wipe_wine_2_cotrain \
--ckpt_dir /scr/tonyzhao/train_logs/wipe_wine_cotrain_diffusion_augmentation_chunk64_ema_3e-4_seed0 \
--policy_class Diffusion --chunk_size 64 \
--batch_size 32 --lr 3e-4 --seed 0 \
--num_steps 1000000 --eval_every 1000000 --validate_every 5000 --save_every 5000
######################## VINN ########################
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=1 python3 train.py --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted --cam_name top --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=0 python3 train.py --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted --cam_name left_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=1 python3 train.py --dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted --cam_name right_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=sim_transfer_cube_scripted
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt
TASK_NAME=sim_transfer_cube_scripted
python3 vinn_select_k.py \
--dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-seed-0-test
python3 vinn_eval.py \
--dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted \
--model_dir /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-seed-0-test \
--task_name $TASK_NAME
## TODO
make sure env is consistent
tune a bit more
######################## VINN Real ########################
### test backward compatibility
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=1 python3 train.py --task sim_transfer_cube_scripted --cam_name top --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task sim_transfer_cube_scripted --cam_name left_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=1 python3 train.py --task sim_transfer_cube_scripted --cam_name right_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=sim_transfer_cube_scripted
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt
TASK_NAME=sim_transfer_cube_scripted
python3 vinn_select_k.py \
--dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-seed-0-test
python3 vinn_eval.py \
--dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted \
--model_dir /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-seed-0-test \
--task_name $TASK_NAME
### new data loader passed backward compatibility
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine --cam_name cam_high --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine --cam_name cam_left_wrist --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine --cam_name cam_right_wrist --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine_cotrain --cam_name cam_high --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine_cotrain --cam_name cam_left_wrist --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine_cotrain --cam_name cam_right_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan --cam_name cam_high --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan --cam_name cam_left_wrist --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan --cam_name cam_right_wrist --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan_cotrain --cam_name cam_high --seed 0
#CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan_cotrain --cam_name cam_left_wrist --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan_cotrain --cam_name cam_right_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wipe_wine_cotrain --cam_name cam_right_wrist --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_elevator_truncated --cam_name cam_high --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_elevator_truncated --cam_name cam_left_wrist --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_elevator_truncated --cam_name cam_right_wrist --seed 0
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_wash_pan_cotrain --cam_name cam_right_wrist --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_elevator_truncated_cotrain --cam_name cam_high --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_elevator_truncated_cotrain --cam_name cam_left_wrist --seed 0
CUDA_VISIBLE_DEVICES=1 python3 train.py --task aloha_mobile_elevator_truncated_cotrain --cam_name cam_right_wrist --seed 0
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_wipe_wine
DATA_NAME=aloha_mobile_wipe_wine
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_wipe_wine_cotrain
DATA_NAME=aloha_mobile_wipe_wine
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_wash_pan
DATA_NAME=aloha_mobile_wash_pan
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_wash_pan_cotrain
DATA_NAME=aloha_mobile_wash_pan
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_elevator_truncated
DATA_NAME=aloha_mobile_elevator_truncated
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_elevator_truncated_cotrain
DATA_NAME=aloha_mobile_elevator_truncated
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
# push chair task
conda activate mobile
export CUDA_VISIBLE_DEVICES=0
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
python3 train.py --task aloha_mobile_chair_truncated --cam_name cam_high --seed 0
python3 train.py --task aloha_mobile_chair_truncated --cam_name cam_left_wrist --seed 0
python3 train.py --task aloha_mobile_chair_truncated --cam_name cam_right_wrist --seed 0
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_chair_truncated
DATA_NAME=aloha_mobile_chair_truncated
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
conda activate mobile
export CUDA_VISIBLE_DEVICES=1
cd /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning
python3 train.py --task aloha_mobile_chair_truncated_cotrain --cam_name cam_high --seed 0
python3 train.py --task aloha_mobile_chair_truncated_cotrain --cam_name cam_left_wrist --seed 0
python3 train.py --task aloha_mobile_chair_truncated_cotrain --cam_name cam_right_wrist --seed 0
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_chair_truncated_cotrain
DATA_NAME=aloha_mobile_chair_truncated
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
# cache feature again for wipe wine
conda activate mobile
export CUDA_VISIBLE_DEVICES=0
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_wipe_wine
DATA_NAME=aloha_mobile_wipe_wine
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
cd /home/tonyzhao/Research/act-plus-plus
TASK_NAME=aloha_mobile_wipe_wine_cotrain
DATA_NAME=aloha_mobile_wipe_wine
python3 vinn_cache_feature.py --ckpt_path /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME}
# run on real robot
TASK_NAME=aloha_mobile_chair_truncated
python3 vinn_select_k.py \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME} \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-${TASK_NAME}-seed-0
python3 vinn_eval.py \
--dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted \
--model_dir /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-${TASK_NAME}-seed-0 \
--task_name $TASK_NAME
TASK_NAME=aloha_mobile_chair_truncated
python3 vinn_select_k.py \
--dataset_dir /scr/tonyzhao/mobile_aloha_datasets/${DATA_NAME} \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-${TASK_NAME}-seed-0
python3 vinn_eval.py \
--dataset_dir /scr/tonyzhao/datasets/sim_transfer_cube_scripted \
--model_dir /home/tonyzhao/Research/act-plus-plus/byol_pytorch/examples/lightning/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--ckpt_dir /scr/tonyzhao/train_logs/VINN-eval-${TASK_NAME}-seed-0 \
--task_name $TASK_NAME
# eval on real robot
conda activate aloha
cd /home/mobile-aloha/interbotix_ws/src/act
TASK_NAME=aloha_mobile_wipe_wine
python3 vinn_cache_feature.py --ckpt_path /home/mobile-aloha/interbotix_ws/src/act/ckpts/vinn_ckpts/byol-${TASK_NAME}-DUMMY-seed-0.pt
TASK_NAME=aloha_mobile_wipe_wine
python3 vinn_select_k.py \
--dataset_dir /home/mobile-aloha/data/${TASK_NAME} \
--ckpt_dir /home/mobile-aloha/interbotix_ws/src/act/ckpts/vinn_ckpts/VINN-eval-seed-0-test \
TASK_NAME=aloha_mobile_wipe_wine
python3 vinn_eval.py \
--dataset_dir /home/mobile-aloha/data/${TASK_NAME} \
--model_dir /home/mobile-aloha/interbotix_ws/src/act/ckpts/vinn_ckpts/byol-${TASK_NAME}-DUMMY-seed-0.pt \
--ckpt_dir /home/mobile-aloha/interbotix_ws/src/act/ckpts/vinn_ckpts/VINN-eval-seed-0-test \
--task_name $TASK_NAME
---------------------------------------------------------------------------------------
NOTE: chunk size cannot be any number, try before launching
TODO: Add history, EMA at test time
conda activate mobile
cd /home/tonyzhao/Research/act-plus-plus
CUDA_VISIBLE_DEVICES=1 python3 train_actuator_network.py