-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·360 lines (303 loc) · 15.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import numpy as np
import torch
import os
import h5py
import pickle
import fnmatch
import cv2
from time import time
from torch.utils.data import TensorDataset, DataLoader
import torchvision.transforms as transforms
import IPython
e = IPython.embed
def flatten_list(l):
return [item for sublist in l for item in sublist]
class EpisodicDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path_list, camera_names, norm_stats, episode_ids, episode_len, chunk_size, policy_class):
super(EpisodicDataset).__init__()
self.episode_ids = episode_ids
self.dataset_path_list = dataset_path_list
self.camera_names = camera_names
self.norm_stats = norm_stats
self.episode_len = episode_len
self.chunk_size = chunk_size
self.cumulative_len = np.cumsum(self.episode_len)
self.max_episode_len = max(episode_len)
self.policy_class = policy_class
if self.policy_class == 'Diffusion':
self.augment_images = True
else:
self.augment_images = False
self.transformations = None
self.__getitem__(0) # initialize self.is_sim and self.transformations
self.is_sim = False
# def __len__(self):
# return sum(self.episode_len)
def _locate_transition(self, index):
assert index < self.cumulative_len[-1]
episode_index = np.argmax(self.cumulative_len > index) # argmax returns first True index
start_ts = index - (self.cumulative_len[episode_index] - self.episode_len[episode_index])
episode_id = self.episode_ids[episode_index]
return episode_id, start_ts
def __getitem__(self, index):
episode_id, start_ts = self._locate_transition(index)
dataset_path = self.dataset_path_list[episode_id]
try:
# print(dataset_path)
with h5py.File(dataset_path, 'r') as root:
try: # some legacy data does not have this attribute
is_sim = root.attrs['sim']
except:
is_sim = False
compressed = root.attrs.get('compress', False)
if '/base_action' in root:
base_action = root['/base_action'][()]
base_action = preprocess_base_action(base_action)
action = np.concatenate([root['/action'][()], base_action], axis=-1)
else:
action = root['/action'][()]
dummy_base_action = np.zeros([action.shape[0], 2])
action = np.concatenate([action, dummy_base_action], axis=-1)
original_action_shape = action.shape
episode_len = original_action_shape[0]
# get observation at start_ts only
qpos = root['/observations/qpos'][start_ts]
qvel = root['/observations/qvel'][start_ts]
image_dict = dict()
for cam_name in self.camera_names:
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][start_ts]
if compressed:
for cam_name in image_dict.keys():
decompressed_image = cv2.imdecode(image_dict[cam_name], 1)
image_dict[cam_name] = np.array(decompressed_image)
# get all actions after and including start_ts
if is_sim:
action = action[start_ts:]
action_len = episode_len - start_ts
else:
action = action[max(0, start_ts - 1):] # hack, to make timesteps more aligned
action_len = episode_len - max(0, start_ts - 1) # hack, to make timesteps more aligned
# self.is_sim = is_sim
padded_action = np.zeros((self.max_episode_len, original_action_shape[1]), dtype=np.float32)
padded_action[:action_len] = action
is_pad = np.zeros(self.max_episode_len)
is_pad[action_len:] = 1
padded_action = padded_action[:self.chunk_size]
is_pad = is_pad[:self.chunk_size]
# new axis for different cameras
all_cam_images = []
for cam_name in self.camera_names:
all_cam_images.append(image_dict[cam_name])
all_cam_images = np.stack(all_cam_images, axis=0)
# construct observations
image_data = torch.from_numpy(all_cam_images)
qpos_data = torch.from_numpy(qpos).float()
action_data = torch.from_numpy(padded_action).float()
is_pad = torch.from_numpy(is_pad).bool()
# channel last
image_data = torch.einsum('k h w c -> k c h w', image_data)
# augmentation
if self.transformations is None:
print('Initializing transformations')
original_size = image_data.shape[2:]
ratio = 0.95
self.transformations = [
transforms.RandomCrop(size=[int(original_size[0] * ratio), int(original_size[1] * ratio)]),
transforms.Resize(original_size, antialias=True),
transforms.RandomRotation(degrees=[-5.0, 5.0], expand=False),
transforms.ColorJitter(brightness=0.3, contrast=0.4, saturation=0.5) #, hue=0.08)
]
if self.augment_images:
for transform in self.transformations:
image_data = transform(image_data)
# normalize image and change dtype to float
image_data = image_data / 255.0
if self.policy_class == 'Diffusion':
# normalize to [-1, 1]
action_data = ((action_data - self.norm_stats["action_min"]) / (self.norm_stats["action_max"] - self.norm_stats["action_min"])) * 2 - 1
else:
# normalize to mean 0 std 1
action_data = (action_data - self.norm_stats["action_mean"]) / self.norm_stats["action_std"]
qpos_data = (qpos_data - self.norm_stats["qpos_mean"]) / self.norm_stats["qpos_std"]
except:
print(f'Error loading {dataset_path} in __getitem__')
quit()
# print(image_data.dtype, qpos_data.dtype, action_data.dtype, is_pad.dtype)
return image_data, qpos_data, action_data, is_pad
def get_norm_stats(dataset_path_list):
all_qpos_data = []
all_action_data = []
all_episode_len = []
for dataset_path in dataset_path_list:
try:
with h5py.File(dataset_path, 'r') as root:
qpos = root['/observations/qpos'][()]
qvel = root['/observations/qvel'][()]
if '/base_action' in root:
base_action = root['/base_action'][()]
base_action = preprocess_base_action(base_action)
action = np.concatenate([root['/action'][()], base_action], axis=-1)
else:
action = root['/action'][()]
dummy_base_action = np.zeros([action.shape[0], 2])
action = np.concatenate([action, dummy_base_action], axis=-1)
except Exception as e:
print(f'Error loading {dataset_path} in get_norm_stats')
print(e)
quit()
all_qpos_data.append(torch.from_numpy(qpos))
all_action_data.append(torch.from_numpy(action))
all_episode_len.append(len(qpos))
all_qpos_data = torch.cat(all_qpos_data, dim=0)
all_action_data = torch.cat(all_action_data, dim=0)
# normalize action data
action_mean = all_action_data.mean(dim=[0]).float()
action_std = all_action_data.std(dim=[0]).float()
action_std = torch.clip(action_std, 1e-2, np.inf) # clipping
# normalize qpos data
qpos_mean = all_qpos_data.mean(dim=[0]).float()
qpos_std = all_qpos_data.std(dim=[0]).float()
qpos_std = torch.clip(qpos_std, 1e-2, np.inf) # clipping
action_min = all_action_data.min(dim=0).values.float()
action_max = all_action_data.max(dim=0).values.float()
eps = 0.0001
stats = {"action_mean": action_mean.numpy(), "action_std": action_std.numpy(),
"action_min": action_min.numpy() - eps,"action_max": action_max.numpy() + eps,
"qpos_mean": qpos_mean.numpy(), "qpos_std": qpos_std.numpy(),
"example_qpos": qpos}
return stats, all_episode_len
def find_all_hdf5(dataset_dir, skip_mirrored_data):
hdf5_files = []
for root, dirs, files in os.walk(dataset_dir):
for filename in fnmatch.filter(files, '*.hdf5'):
if 'features' in filename: continue
if skip_mirrored_data and 'mirror' in filename:
continue
hdf5_files.append(os.path.join(root, filename))
print(f'Found {len(hdf5_files)} hdf5 files')
return hdf5_files
def BatchSampler(batch_size, episode_len_l, sample_weights):
sample_probs = np.array(sample_weights) / np.sum(sample_weights) if sample_weights is not None else None
sum_dataset_len_l = np.cumsum([0] + [np.sum(episode_len) for episode_len in episode_len_l])
while True:
batch = []
for _ in range(batch_size):
episode_idx = np.random.choice(len(episode_len_l), p=sample_probs)
step_idx = np.random.randint(sum_dataset_len_l[episode_idx], sum_dataset_len_l[episode_idx + 1])
batch.append(step_idx)
yield batch
def load_data(dataset_dir_l, name_filter, camera_names, batch_size_train, batch_size_val, chunk_size, skip_mirrored_data=False, load_pretrain=False, policy_class=None, stats_dir_l=None, sample_weights=None, train_ratio=0.99):
if type(dataset_dir_l) == str:
dataset_dir_l = [dataset_dir_l]
dataset_path_list_list = [find_all_hdf5(dataset_dir, skip_mirrored_data) for dataset_dir in dataset_dir_l]
num_episodes_0 = len(dataset_path_list_list[0])
dataset_path_list = flatten_list(dataset_path_list_list)
dataset_path_list = [n for n in dataset_path_list if name_filter(n)]
num_episodes_l = [len(dataset_path_list) for dataset_path_list in dataset_path_list_list]
num_episodes_cumsum = np.cumsum(num_episodes_l)
# obtain train test split on dataset_dir_l[0]
shuffled_episode_ids_0 = np.random.permutation(num_episodes_0)
train_episode_ids_0 = shuffled_episode_ids_0[:int(train_ratio * num_episodes_0)]
val_episode_ids_0 = shuffled_episode_ids_0[int(train_ratio * num_episodes_0):]
train_episode_ids_l = [train_episode_ids_0] + [np.arange(num_episodes) + num_episodes_cumsum[idx] for idx, num_episodes in enumerate(num_episodes_l[1:])]
val_episode_ids_l = [val_episode_ids_0]
train_episode_ids = np.concatenate(train_episode_ids_l)
val_episode_ids = np.concatenate(val_episode_ids_l)
print(f'\n\nData from: {dataset_dir_l}\n- Train on {[len(x) for x in train_episode_ids_l]} episodes\n- Test on {[len(x) for x in val_episode_ids_l]} episodes\n\n')
# obtain normalization stats for qpos and action
# if load_pretrain:
# with open(os.path.join('/home/zfu/interbotix_ws/src/act/ckpts/pretrain_all', 'dataset_stats.pkl'), 'rb') as f:
# norm_stats = pickle.load(f)
# print('Loaded pretrain dataset stats')
_, all_episode_len = get_norm_stats(dataset_path_list)
train_episode_len_l = [[all_episode_len[i] for i in train_episode_ids] for train_episode_ids in train_episode_ids_l]
val_episode_len_l = [[all_episode_len[i] for i in val_episode_ids] for val_episode_ids in val_episode_ids_l]
train_episode_len = flatten_list(train_episode_len_l)
val_episode_len = flatten_list(val_episode_len_l)
if stats_dir_l is None:
stats_dir_l = dataset_dir_l
elif type(stats_dir_l) == str:
stats_dir_l = [stats_dir_l]
norm_stats, _ = get_norm_stats(flatten_list([find_all_hdf5(stats_dir, skip_mirrored_data) for stats_dir in stats_dir_l]))
print(f'Norm stats from: {stats_dir_l}')
batch_sampler_train = BatchSampler(batch_size_train, train_episode_len_l, sample_weights)
batch_sampler_val = BatchSampler(batch_size_val, val_episode_len_l, None)
# print(f'train_episode_len: {train_episode_len}, val_episode_len: {val_episode_len}, train_episode_ids: {train_episode_ids}, val_episode_ids: {val_episode_ids}')
# construct dataset and dataloader
train_dataset = EpisodicDataset(dataset_path_list, camera_names, norm_stats, train_episode_ids, train_episode_len, chunk_size, policy_class)
val_dataset = EpisodicDataset(dataset_path_list, camera_names, norm_stats, val_episode_ids, val_episode_len, chunk_size, policy_class)
train_num_workers = (8 if os.getlogin() == 'zfu' else 16) if train_dataset.augment_images else 2
val_num_workers = 8 if train_dataset.augment_images else 2
print(f'Augment images: {train_dataset.augment_images}, train_num_workers: {train_num_workers}, val_num_workers: {val_num_workers}')
train_dataloader = DataLoader(train_dataset, batch_sampler=batch_sampler_train, pin_memory=True, num_workers=train_num_workers, prefetch_factor=2)
val_dataloader = DataLoader(val_dataset, batch_sampler=batch_sampler_val, pin_memory=True, num_workers=val_num_workers, prefetch_factor=2)
return train_dataloader, val_dataloader, norm_stats, train_dataset.is_sim
def calibrate_linear_vel(base_action, c=None):
if c is None:
c = 0.0 # 0.19
v = base_action[..., 0]
w = base_action[..., 1]
base_action = base_action.copy()
base_action[..., 0] = v - c * w
return base_action
def smooth_base_action(base_action):
return np.stack([
np.convolve(base_action[:, i], np.ones(5)/5, mode='same') for i in range(base_action.shape[1])
], axis=-1).astype(np.float32)
def preprocess_base_action(base_action):
# base_action = calibrate_linear_vel(base_action)
base_action = smooth_base_action(base_action)
return base_action
def postprocess_base_action(base_action):
linear_vel, angular_vel = base_action
linear_vel *= 1.0
angular_vel *= 1.0
# angular_vel = 0
# if np.abs(linear_vel) < 0.05:
# linear_vel = 0
return np.array([linear_vel, angular_vel])
### env utils
def sample_box_pose():
x_range = [0.0, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
cube_quat = np.array([1, 0, 0, 0])
return np.concatenate([cube_position, cube_quat])
def sample_insertion_pose():
# Peg
x_range = [0.1, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
peg_quat = np.array([1, 0, 0, 0])
peg_pose = np.concatenate([peg_position, peg_quat])
# Socket
x_range = [-0.2, -0.1]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
socket_quat = np.array([1, 0, 0, 0])
socket_pose = np.concatenate([socket_position, socket_quat])
return peg_pose, socket_pose
### helper functions
def compute_dict_mean(epoch_dicts):
result = {k: None for k in epoch_dicts[0]}
num_items = len(epoch_dicts)
for k in result:
value_sum = 0
for epoch_dict in epoch_dicts:
value_sum += epoch_dict[k]
result[k] = value_sum / num_items
return result
def detach_dict(d):
new_d = dict()
for k, v in d.items():
new_d[k] = v.detach()
return new_d
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)