-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtf_layers.py
308 lines (275 loc) · 10.8 KB
/
tf_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import tensorflow as tf
import lc0_az_policy_map
class L2WeightDecay(tf.keras.constraints.Constraint):
def __init__(self, decay_rate):
super().__init__()
self.decay_factor = 1 - decay_rate
def __call__(self, w):
return w * self.decay_factor
class NormConstraint(tf.keras.constraints.Constraint):
def __init__(self, initialization_type=None):
self.initialization_type = initialization_type
def __call__(self, w):
fan_in = tf.cast(tf.reduce_prod(w.shape[:-1]), tf.float32)
fan_out = tf.cast(w.shape[-1], tf.float32)
n_dims = fan_in * fan_out
# The expected norms with _uniform and _normal versions of each initializer
# are equivalent but have some bonus maths for clarity anyway
if self.initialization_type == "glorot_uniform":
limit = tf.sqrt(6 / (fan_in + fan_out))
desired_norm = tf.sqrt(n_dims / 3) * limit
elif self.initialization_type == "he_uniform":
limit = tf.sqrt(6 / fan_in)
desired_norm = tf.sqrt(n_dims / 3) * limit
elif self.initialization_type == "glorot_normal":
scale = tf.sqrt(2 / (fan_in + fan_out))
desired_norm = scale * tf.sqrt(n_dims)
elif self.initialization_type == "he_normal":
scale = tf.sqrt(2 / fan_in)
desired_norm = scale * tf.sqrt(n_dims)
else:
raise ValueError("Unknown initialization type!")
return tf.clip_by_norm(w, desired_norm)
class SqueezeExcitation(tf.keras.layers.Layer):
def __init__(self, se_ratio, name):
super().__init__()
self.se_ratio = se_ratio
self.pooler = tf.keras.layers.GlobalAveragePooling2D(
data_format="channels_first"
)
self.squeeze = None
self.excite = None
self.name_str = name
def build(self, input_shape):
channels = input_shape[-3]
assert channels % self.se_ratio == 0
squeeze_dim = int(channels // self.se_ratio)
excite_dim = 2 * channels
self.squeeze = self.add_weight(
name=self.name_str + "/squeeze",
shape=(channels, squeeze_dim),
initializer="glorot_normal",
trainable=True,
)
self.excite = self.add_weight(
name=self.name_str + "/excite",
shape=(squeeze_dim, excite_dim),
initializer="glorot_normal",
trainable=True,
)
def call(self, inputs, training=None, mask=None):
pooled = self.pooler(inputs)
squeezed = tf.nn.relu(pooled @ self.squeeze)
excited = squeezed @ self.excite
excited = tf.expand_dims(
tf.expand_dims(excited, -1), -1
) # Add two extra dims for broadcasting
gammas, betas = tf.split(excited, 2, axis=1)
gammas = tf.nn.sigmoid(gammas)
return gammas * inputs + betas
class ConvBlock(tf.keras.layers.Layer):
def __init__(self, filter_size, output_channels, constrain_norms, name, bn_scale):
super().__init__()
if constrain_norms:
constraint = NormConstraint("glorot_normal")
else:
constraint = None
self.conv_layer = tf.keras.layers.Conv2D(
output_channels,
filter_size,
use_bias=False,
padding="same",
kernel_initializer="glorot_normal",
kernel_constraint=constraint,
data_format="channels_first",
name=name + "/conv2d",
)
self.batchnorm = tf.keras.layers.BatchNormalization(
epsilon=1e-5,
axis=1,
center=True,
scale=bn_scale,
name=name + "/batchnorm",
dtype=tf.float32,
)
def call(self, inputs, training=None, mask=None):
out = self.conv_layer(inputs)
out = self.batchnorm(out, training=training)
return tf.keras.activations.relu(out)
class ResidualBlock(tf.keras.layers.Layer):
def __init__(self, channels, se_ratio, constrain_norms, name):
super().__init__()
# We always retain norm constraints in the residual block because it's necessary when combined with
# batchnorms, see https://blog.janestreet.com/l2-regularization-and-batch-norm/
if constrain_norms:
constraint = NormConstraint("glorot_normal")
else:
constraint = None
self.conv1 = tf.keras.layers.Conv2D(
channels,
3,
use_bias=False,
padding="same",
kernel_initializer="glorot_normal",
kernel_constraint=constraint,
data_format="channels_first",
name=name + "/1/conv2d",
)
self.batch_norm = tf.keras.layers.BatchNormalization(
epsilon=1e-5,
axis=1,
center=True,
scale=False,
name=name + "/batchnorm",
dtype=tf.float32,
)
self.conv2 = tf.keras.layers.Conv2D(
channels,
3,
use_bias=False,
padding="same",
kernel_initializer="glorot_normal",
kernel_constraint=constraint,
data_format="channels_first",
name=name + "/2/conv2d",
)
self.squeeze_excite = SqueezeExcitation(se_ratio, name=name + "/se")
def call(self, inputs, training=None, mask=None):
out1 = self.conv1(inputs)
out1 = tf.nn.relu(self.batch_norm(out1))
out2 = self.conv2(out1)
out2 = self.squeeze_excite(out2)
return tf.nn.relu(inputs + out2)
class ConvolutionalPolicyHead(tf.keras.layers.Layer):
def __init__(self, num_filters, constrain_norms):
super().__init__()
self.conv_block = ConvBlock(
filter_size=3,
output_channels=num_filters,
constrain_norms=constrain_norms,
name="policy1",
bn_scale=True,
)
# No constraint on the final convolution, because it's not going to be followed by a batchnorm
self.conv = tf.keras.layers.Conv2D(
80,
3,
use_bias=True,
padding="same",
kernel_initializer="glorot_normal",
data_format="channels_first",
name="policy",
)
self.fc1 = tf.constant(lc0_az_policy_map.make_map())
def call(self, inputs, training=None, mask=None):
flow = self.conv_block(inputs)
flow = self.conv(flow)
h_conv_pol_flat = tf.reshape(flow, [-1, 80 * 8 * 8])
return tf.matmul(h_conv_pol_flat, tf.cast(self.fc1, h_conv_pol_flat.dtype))
class DensePolicyHead(tf.keras.layers.Layer):
def __init__(self, hidden_dim=128):
super().__init__()
self.fc1 = tf.keras.layers.Dense(
hidden_dim,
kernel_initializer="glorot_normal",
name="policy/dense1",
activation="relu",
)
# No constraint on the final layer, because it's not going to be followed by a batchnorm
self.fc_final = tf.keras.layers.Dense(
1858, kernel_initializer="glorot_normal", name="policy/dense"
)
def call(self, inputs, training=None, mask=None):
if tf.rank(inputs) > 2:
# Flatten input before proceeding
inputs = tf.reshape(inputs, (tf.shape(inputs)[0], -1))
out = self.fc1(inputs)
return self.fc_final(out)
class ConvolutionalValueOrMovesLeftHead(tf.keras.layers.Layer):
def __init__(self, output_dim, num_filters, hidden_dim, constrain_norms, relu):
super().__init__()
self.num_filters = num_filters
self.conv_block = ConvBlock(
filter_size=1,
output_channels=num_filters,
constrain_norms=constrain_norms,
name="conv",
bn_scale=True,
)
# No constraint on the final layers, because they're not going to be followed by a batchnorm
self.fc2 = tf.keras.layers.Dense(
hidden_dim,
use_bias=True,
activation="relu",
kernel_initializer="glorot_normal",
name="fc2")
self.fc_out = tf.keras.layers.Dense(
output_dim,
use_bias=True,
activation="relu" if relu else None,
kernel_initializer="glorot_normal",
name="fc_out",
)
def call(self, inputs, training=None, mask=None):
flow = self.conv_block(inputs)
flow = tf.reshape(flow, [-1, self.num_filters * 8 * 8])
flow = self.fc2(flow)
return self.fc_out(flow)
class DenseValueOrMovesLeftHead(tf.keras.layers.Layer):
def __init__(self, output_dim, hidden_dim, relu):
super().__init__()
self.fc1 = tf.keras.layers.Dense(
hidden_dim,
kernel_initializer="glorot_normal",
activation="relu",
name="value/dense1",
)
self.fc_out = tf.keras.layers.Dense(
output_dim,
kernel_initializer="glorot_normal",
name="value/dense",
activation="relu" if relu else None,
)
def call(self, inputs, training=None, mask=None):
if tf.rank(inputs) > 2:
# Flatten input before proceeding
inputs = tf.reshape(inputs, (tf.shape(inputs)[0], -1))
flow = self.fc1(inputs)
return self.fc_out(flow)
class CoatnetSelfAttention(tf.keras.layers.Layer):
# TODO Not done yet!
# Among other things, missing the self-attention logit scale!
def __init__(self, dim):
self.layernorm = tf.keras.layers.LayerNormalization()
self.qkv_weights = self.add_weight(
name="qkv_weights",
shape=(dim, dim * 3),
initializer="glorot_normal",
trainable=True,
)
self.relative_attention_bias = self.add_weight(
name="relative_attention_bias",
shape=(15 * 15,),
initializer="glorot_normal",
trainable=True,
)
width_offsets = tf.expand_dims(tf.range(8), 0) - tf.expand_dims(tf.range(8), 1)
width_offsets += 7
height_offsets = tf.transpose(width_offsets)
self.relative_attention_indices = width_offsets + (15 * height_offsets)
breakpoint() # Double-check those indices
print()
def call(self, inputs):
normalized_input = self.layernorm(inputs)
qkv = normalized_input @ self.qkv_weights
query, key, value = tf.split(qkv, 3, axis=-1)
self_attention_logits = tf.einsum("bi, bj -> bij", query, key)
relative_attention_bias = tf.gather(
self.relative_attention_bias, self.relative_attention_indices
)
self_attention_logits += relative_attention_bias
self_attention_weights = tf.nn.softmax(self_attention_logits)
breakpoint()
print() # Double-check weights shape here
self_attention_output = value @ self_attention_weights
return inputs + self_attention_output