-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustomcalckalman.py
288 lines (150 loc) · 7.57 KB
/
customcalckalman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import cv2
import argparse
import sys
import math
import numpy as np
keep_processing = True
selection_in_progress = False
fullscreen = False
parser = argparse.ArgumentParser(description='Perform ' + sys.argv[0] + ' example operation on incoming camera/video image')
parser.add_argument("-c", "--camera_to_use", type=int, help="specify camera to use", default=0)
parser.add_argument("-r", "--rescale", type=float, help="rescale image by this factor", default=1.0)
parser.add_argument('video_file', metavar='video_file', type=str, nargs='?', help='specify optional video file')
args = parser.parse_args()
#cropping the desired region
boxes = []
current_mouse_position = np.ones(2, dtype=np.int32)
def on_mouse(event, x, y, flags, params):
global boxes
global selection_in_progress
current_mouse_position[0] = x
current_mouse_position[1] = y
if event == cv2.EVENT_LBUTTONDOWN:
boxes = []
sbox = [x, y]
selection_in_progress = True
boxes.append(sbox)
elif event == cv2.EVENT_LBUTTONUP:
ebox = [x, y]
selection_in_progress = False
boxes.append(ebox)
def center(points):
x = np.float32((points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4.0)
y = np.float32((points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4.0)
return np.array([np.float32(x), np.float32(y)], np.float32)
def nothing(x):
pass
try:
if not(args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture(0)
except:
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
windowName = "Kalman Object Tracking"
windowName2 = "Hue histogram back projection"
windowNameSelection = "initial selected region"
# kalmann filter object
# calculated for my environment
kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],
[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],
[0,1,0,1],
[0,0,1,0],
[0,0,0,1]],np.float32)
'''kalman.transitionMatrix = np.array([[1,0,1,0],
[0,1,0,1],
[0,0,1,0],
[1,0,0,1]],np.float32)'''
kalman.processNoiseCov = np.array([[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]],np.float32) * 0.03
measurement = np.array((2,1), np.float32)
prediction = np.zeros((2,1), np.float32)
print("\nObservation blue color mai im showing")
print("Prediction is in the green color")
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
cv2.namedWindow(windowName, cv2.WINDOW_NORMAL)
cv2.namedWindow(windowName2, cv2.WINDOW_NORMAL)
cv2.namedWindow(windowNameSelection, cv2.WINDOW_NORMAL)
#might need thresholding for more accuracy
#ill remove this in the final thing
#8879606320
s_lower = 60
cv2.createTrackbar("s lower", windowName2, s_lower, 255, nothing)
s_upper = 255
cv2.createTrackbar("s upper", windowName2, s_upper, 255, nothing)
v_lower = 32
cv2.createTrackbar("v lower", windowName2, v_lower, 255, nothing)
v_upper = 255
cv2.createTrackbar("v upper", windowName2, v_upper, 255, nothing)
cv2.setMouseCallback(windowName, on_mouse, 0)
cropped = False
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while (keep_processing):
if (cap.isOpened):
ret, frame = cap.read()
if (args.rescale != 1.0):
frame = cv2.resize(frame, (0, 0), fx=args.rescale, fy=args.rescale)
#seeing how much time kalmanntakes
start_t = cv2.getTickCount()
# get parameters from track bars
s_lower = cv2.getTrackbarPos("s lower", windowName2)
s_upper = cv2.getTrackbarPos("s upper", windowName2)
v_lower = cv2.getTrackbarPos("v lower", windowName2)
v_upper = cv2.getTrackbarPos("v upper", windowName2)
# cropping waala part
if (len(boxes) > 1) and (boxes[0][1] < boxes[1][1]) and (boxes[0][0] < boxes[1][0]):
crop = frame[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0]].copy()
h, w, c = crop.shape #
if (h > 0) and (w > 0):
cropped = True
hsv_crop = cv2.cvtColor(crop, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_crop, np.array((0., float(s_lower),float(v_lower))), np.array((180.,float(s_upper),float(v_upper))))
# mask = cv2.inRange(hsv_crop, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
crop_hist = cv2.calcHist([hsv_crop],[0, 1],mask,[180, 255],[0,180, 0, 255])
cv2.normalize(crop_hist,crop_hist,0,255,cv2.NORM_MINMAX)
track_window = (boxes[0][0],boxes[0][1],boxes[1][0] - boxes[0][0],boxes[1][1] - boxes[0][1])
cv2.imshow(windowNameSelection,crop)
boxes = []
##mouse position can be changed
if (selection_in_progress):
top_left = (boxes[0][0], boxes[0][1])
bottom_right = (current_mouse_position[0], current_mouse_position[1])
cv2.rectangle(frame,top_left, bottom_right, (0,255,0), 2)
# if we have a selected region
if (cropped):
img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
img_bproject = cv2.calcBackProject([img_hsv],[0,1],crop_hist,[0,180,0,255],1)
cv2.imshow(windowName2,img_bproject)
##camshift for better results
ret, track_window = cv2.CamShift(img_bproject, track_window, term_crit)
x,y,w,h = track_window
frame = cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0),2)
pts = cv2.boxPoints(ret)
pts = np.int0(pts)
kalman.correct(center(pts))
prediction = kalman.predict()
print(prediction[0],prediction[1],prediction[2])
frame = cv2.rectangle(frame, (prediction[0]-(0.5*w),prediction[1]-(0.5*h)), (prediction[0]+(0.5*w),prediction[1]+(0.5*h)), (0,255,0),2)
else:
img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(img_hsv, np.array((0., float(s_lower),float(v_lower))), np.array((180.,float(s_upper),float(v_upper))))
cv2.imshow(windowName2,mask)
cv2.imshow(windowName,frame)
cv2.setWindowProperty(windowName, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN & fullscreen)
stop_t = ((cv2.getTickCount() - start_t)/cv2.getTickFrequency()) * 1000
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
fullscreen = not(fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")