-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathML_project_gpc_and_svm.py
591 lines (309 loc) · 11.8 KB
/
ML_project_gpc_and_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
# In[2]:
#load data file
data = pd.read_csv('D:\Semester 6 - 3rd year\Machine Learning -CO544\data.csv')
# In[3]:
print(data.info())
# In[4]:
data.replace('?',np.nan, inplace=True)
# In[5]:
print(data.info())
# In[6]:
data["A12"]=data["A12"].astype(float)
data["A7"]=data["A7"].astype(float)
data["A14"]=data["A14"].astype(float)
data["A2"]=data["A2"].astype(float)
# In[7]:
import seaborn as sns
sns.countplot(data['A16'],label="count")
plt.show()
# In[8]:
newer_data = data.copy()
# In[9]:
#one-hot encoding to object type columns
onehote_data = newer_data.copy()
onehote_data = pd.get_dummies(onehote_data, columns=['A3'], prefix=['A3'])
onehote_data = pd.get_dummies(onehote_data, columns=['A4'], prefix=['A4'])
onehote_data = pd.get_dummies(onehote_data, columns=['A6'], prefix=['A6'])
onehote_data = pd.get_dummies(onehote_data, columns=['A9'], prefix=['A9'])
onehote_data = pd.get_dummies(onehote_data, columns=['A15'], prefix=['A15'])
# In[10]:
onehote_data.head()
# In[11]:
data.mean()
# In[12]:
#label encoding to column A1
onehote_data["A1"]= onehote_data["A1"].astype('category')
onehote_data['A1'] = onehote_data['A1'].cat.codes
onehote_data.head()
# In[13]:
print(onehote_data.info())
# In[14]:
onehote_data.replace(np.nan,0, inplace=True)
# In[15]:
feature_names = ['A1', 'A2', 'A5', 'A7','A8','A10','A11','A12','A13','A14','A3_l','A3_u','A3_y','A4_g','A4_gg','A4_p','A6_aa','A6_c','A6_cc','A6_d','A6_e','A6_ff','A6_i','A6_j','A6_k','A6_m','A6_q','A6_r','A6_w','A6_x','A9_bb','A9_dd','A9_ff','A9_h','A9_j','A9_n','A9_o','A9_v','A9_z','A15_g','A15_p','A15_s']
X = onehote_data[feature_names]
Y = onehote_data['A16']
# In[16]:
#split the data set as training set and test set randomly
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)
# In[17]:
#apply scaling
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# In[18]:
#use model Logistic Regression
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
print('Accuracy of Logistic regression classifier on training set: {:.2f}'
.format(logreg.score(X_train, y_train)))
print('Accuracy of Logistic regression classifier on test set: {:.2f}'
.format(logreg.score(X_test, y_test)))
# In[19]:
#use model Decision Tree Classifier
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier().fit(X_train, y_train)
print('Accuracy of Decision Tree classifier on training set: {:.2f}'
.format(clf.score(X_train, y_train)))
print('Accuracy of Decision Tree classifier on test set: {:.2f}'
.format(clf.score(X_test, y_test)))
# In[20]:
#use model Decision Tree Classifier with maximum depth of 3
clf2 = DecisionTreeClassifier(max_depth=3).fit(X_train, y_train)
print('Accuracy of Decision Tree classifier on training set: {:.2f}'
.format(clf2.score(X_train, y_train)))
print('Accuracy of Decision Tree classifier on test set: {:.2f}'
.format(clf2.score(X_test, y_test)))
# In[21]:
#use model Decision Tree Classifier with maximum depth of 4
clf3 = DecisionTreeClassifier(max_depth=4).fit(X_train, y_train)
print('Accuracy of Decision Tree classifier on training set: {:.2f}'
.format(clf2.score(X_train, y_train)))
print('Accuracy of Decision Tree classifier on test set: {:.2f}'
.format(clf2.score(X_test, y_test)))
# In[22]:
#use model k-neighbours
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
print('Accuracy of K-NN classifier on training set: {:.2f}'
.format(knn.score(X_train, y_train)))
print('Accuracy of K-NN classifier on test set: {:.2f}'
.format(knn.score(X_test, y_test)))
# In[23]:
#use model Linear Discriminant Analysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)
print('Accuracy of LDA classifier on training set: {:.2f}'
.format(lda.score(X_train, y_train)))
print('Accuracy of LDA classifier on test set: {:.2f}'
.format(lda.score(X_test, y_test)))
# In[24]:
#use model Gaussian Naive Bayes
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)
print('Accuracy of GNB classifier on training set: {:.2f}'
.format(gnb.score(X_train, y_train)))
print('Accuracy of GNB classifier on test set: {:.2f}'
.format(gnb.score(X_test, y_test)))
# In[25]:
#use model support vector machine
from sklearn.svm import SVC
svm = SVC()
svm.fit(X_train, y_train)
print('Accuracy of SVM classifier on training set: {:.2f}'
.format(svm.score(X_train, y_train)))
print('Accuracy of SVM classifier on test set: {:.2f}'
.format(svm.score(X_test, y_test)))
# In[26]:
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
rfc = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
rfc.fit(X_train, y_train)
print('Accuracy of RFC classifier on training set: {:.2f}'
.format(rfc.score(X_train, y_train)))
print('Accuracy of RFC classifier on test set: {:.2f}'
.format(rfc.score(X_test, y_test)))
# In[27]:
ABC = AdaBoostClassifier(n_estimators=100)
ABC.fit(X_train, y_train)
print('Accuracy of ABC classifier on training set: {:.2f}'
.format(ABC.score(X_train, y_train)))
print('Accuracy of ABC classifier on test set: {:.2f}'
.format(ABC.score(X_test, y_test)))
# In[28]:
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
Qda = QuadraticDiscriminantAnalysis()
Qda.fit(X_train, y_train)
print('Accuracy of QDA classifier on training set: {:.2f}'
.format(Qda.score(X_train, y_train)))
print('Accuracy of QDA classifier on test set: {:.2f}'
.format(Qda.score(X_test, y_test)))
# In[29]:
from sklearn.gaussian_process import GaussianProcessClassifier
GPC = GaussianProcessClassifier()
GPC.fit(X_train, y_train)
print('Accuracy of GPC classifier on training set: {:.2f}'
.format(GPC.score(X_train, y_train)))
print('Accuracy of GPC classifier on test set: {:.2f}'
.format(GPC.score(X_test, y_test)))
# In[30]:
svm2 = SVC(gamma=2, C=1)
svm2.fit(X_train, y_train)
print('Accuracy of svm2 classifier on training set: {:.2f}'
.format(svm2.score(X_train, y_train)))
print('Accuracy of svm2 classifier on test set: {:.2f}'
.format(svm2.score(X_test, y_test)))
# In[31]:
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(alpha=1, max_iter=1000)
mlp.fit(X_train, y_train)
print('Accuracy of svm2 classifier on training set: {:.2f}'
.format(mlp.score(X_train, y_train)))
print('Accuracy of svm2 classifier on test set: {:.2f}'
.format(mlp.score(X_test, y_test)))
# In[32]:
from sklearn.gaussian_process.kernels import RBF
gpc_rbf = GaussianProcessClassifier(1.0 * RBF(1.0))
gpc_rbf.fit(X_train, y_train)
print('Accuracy of svm2 classifier on training set: {:.2f}'
.format(gpc_rbf.score(X_train, y_train)))
print('Accuracy of svm2 classifier on test set: {:.2f}'
.format(gpc_rbf.score(X_test, y_test)))
# In[33]:
svm3 = SVC(kernel="linear", C=0.008)
svm3.fit(X_train, y_train)
print('Accuracy of svm3 classifier on training set: {:.2f}'
.format(svm3.score(X_train, y_train)))
print('Accuracy of svm3 classifier on test set: {:.2f}'
.format(svm3.score(X_test, y_test)))
# In[34]:
original_test_data = pd.read_csv('D:/Semester 6 - 3rd year/Machine Learning -CO544/testdata_10%.csv')
test_data = original_test_data.copy()
test_data.head()
# In[35]:
test_data.replace('?',np.nan, inplace=True)
# In[36]:
print(test_data.info())
# In[37]:
#convert data types int to float of some attributes
test_data["A12"]=test_data["A12"].astype(float)
test_data["A7"]=test_data["A7"].astype(float)
test_data["A14"]=test_data["A14"].astype(float)
# In[38]:
#label encoding of A1 as b=1 and a=0
test_data["A1"]= test_data["A1"].astype('category')
test_data['A1'] = test_data['A1'].cat.codes
test_data.head()
# In[39]:
#one-hot encoding for objects
test_data = pd.get_dummies(test_data, columns=['A3'], prefix=['A3'])
test_data = pd.get_dummies(test_data, columns=['A4'], prefix=['A4'])
test_data = pd.get_dummies(test_data, columns=['A6'], prefix=['A6'])
test_data = pd.get_dummies(test_data, columns=['A9'], prefix=['A9'])
test_data = pd.get_dummies(test_data, columns=['A15'], prefix=['A15'])
# In[40]:
test_data.replace(np.nan,0, inplace=True)
# In[41]:
#there are missing data columns fro the trained set
# Get missing columns in the training test
missing_cols = set( onehote_data.columns ) - set( test_data.columns )
# Add a missing column in test set with default value equal to 0
for c in missing_cols:
test_data[c] = 0
# Ensure the order of column in the test set is in the same order than in train set
test_data = test_data[ onehote_data.columns]
# In[42]:
X_predict = scaler.transform(test_data[feature_names])
# In[43]:
#using linear discriminant analysis 'svm'
y_predict = svm.predict(X_predict)
print(y_predict)
# In[44]:
tdata_ori = pd.read_csv('D:/Semester 6 - 3rd year/Machine Learning -CO544/testdata.csv');
tdata = tdata_ori.copy()
tdata.head()
# In[45]:
tdata.replace('?',np.nan, inplace=True)
# In[46]:
tdata["A2"]=tdata["A2"].astype(float)
# In[47]:
tdata["A12"]=tdata["A12"].astype(float)
tdata["A7"]=tdata["A7"].astype(float)
tdata["A14"]=tdata["A14"].astype(float)
# In[48]:
tdata["A1"]= tdata["A1"].astype('category')
tdata['A1'] = tdata['A1'].cat.codes
tdata.head()
# In[49]:
tdata = pd.get_dummies(tdata, columns=['A3'], prefix=['A3'])
tdata = pd.get_dummies(tdata, columns=['A4'], prefix=['A4'])
tdata = pd.get_dummies(tdata, columns=['A6'], prefix=['A6'])
tdata = pd.get_dummies(tdata, columns=['A9'], prefix=['A9'])
tdata = pd.get_dummies(tdata, columns=['A15'], prefix=['A15'])
# In[50]:
#there are missing data columns fro the trained set
# Get missing columns in the training test
missing_cols = set( onehote_data.columns ) - set( tdata.columns )
# Add a missing column in test set with default value equal to 0
for c in missing_cols:
tdata[c] = 0
# Ensure the order of column in the test set is in the same order than in train set
tdata = tdata[ onehote_data.columns]
# In[51]:
tdata.replace(np.nan,0, inplace=True)
# In[52]:
X_predict_tdata = scaler.transform(tdata[feature_names])
# In[53]:
y_predict_tData = svm.predict(X_predict_tdata)
print(y_predict_tData)
# In[54]:
dataset = pd.DataFrame({ 'Category': y_predict_tData})
# In[55]:
print(dataset['Category'].value_counts())
# In[56]:
y_predictld = lda.predict(X_predict)
print(y_predictld)
# In[57]:
y_predict_tDatal = lda.predict(X_predict_tdata)
print(y_predict_tDatal)
# In[58]:
datasetld = pd.DataFrame({ 'Category': y_predict_tDatal})
# In[59]:
print(datasetld['Category'].value_counts())
# In[60]:
datasetld.to_csv('D:/Semester 6 - 3rd year/Machine Learning -CO544/resultTestdata3.csv')
# In[61]:
y_predict_tDatagp = GPC.predict(X_predict_tdata)
print(y_predict_tDatagp)
# In[62]:
y_predictldc = GPC.predict(X_predict)
print(y_predictldc)
# In[63]:
datasetldc = pd.DataFrame({ 'Category': y_predict_tDatagp})
datasetldc.to_csv('D:/Semester 6 - 3rd year/Machine Learning -CO544/resultTestdata3gpc.csv')
# In[64]:
y_predictlds = svm3.predict(X_predict)
print(y_predictlds)
# In[65]:
y_predict_tDatasv = svm3.predict(X_predict_tdata)
print(y_predict_tDatasv)
# In[66]:
print(datasetldc['Category'].value_counts())
# In[67]:
datasetldcs = pd.DataFrame({ 'Category': y_predict_tDatasv})
datasetldcs.to_csv('D:/Semester 6 - 3rd year/Machine Learning -CO544/resultTestdata3svm3.csv')
print(datasetldcs['Category'].value_counts())
# In[ ]: