-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCalcImageStructureTensors.m
101 lines (81 loc) · 3.91 KB
/
CalcImageStructureTensors.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function [ tT ] = CalcImageStructureTensors( mInputImage, sharpnessLevel, anisotropyLevel, gradientSmoothness, tensorSmoothness )
% ----------------------------------------------------------------------------------------------- %
% [ tT ] = CalcImageStructureTensors( mInputImage, sharpnessLevel, anisotropyLevel, gradientSmoothness, tensorSmoothness )
% Calculates the Image Structure Tensor
% Input:
% - mInputImage - Input image.
% Matrix, 1 Channels, Floating Point, [0, 1]
% - sharpnessLevel - Local Window Radius.
% Scalar, Floating Point, {1, 2, ..., 10}.
% - anisotropyLevel - Local Window Gaussian Kernel STD.
% Scalar, Floating Point [0.1, 20].
% - gradientSmoothness - Search Window Radius.
% Scalar, Floating Point, {1, 2, ..., 10}.
% - tensorSmoothness - Weights STD Factor.
% Scalar, Floating Point [0.1, 20].
% Output:
% - mOutputImage - Input image.
% Matrix, 1 Channels, Floating Point, [0, 1]
% Remarks:
% 1. Prefixes:
% - 't' - Tensor.
% - 'm' - Matrix.
% - 'v' - Vector.
% 2. Cl
% TODO:
% 1. aa
% Release Notes:
% - 1.0.000 27/10/2014 Or Yair
% * First release version.
% ----------------------------------------------------------------------------------------------- %
tTensors = zeros([size(mInputImage), 3]);
sharpnessLevel = max(sharpnessLevel, 1e-5);
power1 = sharpnessLevel / 2;
power2 = power1 / (1e-7 + 1 - anisotropyLevel);
%%
% Gaussian Blurring Kernel
vGradientSmoother = fspecial('gaussian', [ceil(3 * gradientSmoothness),...
ceil(3 * gradientSmoothness)], gradientSmoothness);
mInputImageSmoothed = imfilter(mInputImage, vGradientSmoother, 'same', 'replicate');
% Notmalize ?? %
%%
vDerivativeKernel = 0.5 * [-1, 0, 1];
mIx = imfilter(mInputImageSmoothed, vDerivativeKernel, 'replicate', 'same');
mIy = imfilter(mInputImageSmoothed, vDerivativeKernel', 'replicate', 'same');
mIxx = mIx .* mIx;
mIyy = mIy .* mIy;
mIxy = mIx .* mIy; % Ixy = Iyx
%%
% Gaussian Blurring Kernel
vTensorSmoother = fspecial('gaussian', [ceil(3 * tensorSmoothness), ceil(3 * tensorSmoothness)], tensorSmoothness);
tTensors(:,:,1) = imfilter(mIxx, vTensorSmoother, 'same', 'replicate');
tTensors(:,:,2) = imfilter(mIxy, vTensorSmoother, 'same', 'replicate');
tTensors(:,:,3) = imfilter(mIyy, vTensorSmoother, 'same', 'replicate');
%%
% Using Jacobi Method
Tau = ( tTensors(:,:,3) - tTensors(:,:,1) ) ./ ( 2 * tTensors(:, :, 2) );
t = sign(Tau) ./ ( abs(Tau) + sqrt( 1 + (Tau .* Tau) ) );
c = 1 ./ sqrt( 1 + (t .* t) );
s = c .* t;
tThetaA = cat(3, c, -s);
tThetaB = cat(3, s, c);
mLambdaA = tTensors(:, :, 1) - ( t .* tTensors(:, :, 2) );
mLambdaB = tTensors(:, :, 3) + ( t .* tTensors(:, :, 2) );
mMinLambdaMask = mLambdaA < mLambdaB;
tMinLambdaMask = cat(3, mMinLambdaMask, mMinLambdaMask);
mLambda1 = mMinLambdaMask .* mLambdaA + (1 - mMinLambdaMask) .* mLambdaB;
mLambda2 = mMinLambdaMask .* mLambdaB + (1 - mMinLambdaMask) .* mLambdaA;
tTheta1 = tMinLambdaMask .* tThetaA + (1 - tMinLambdaMask) .* tThetaB;
tTheta2 = tMinLambdaMask .* tThetaB + (1 - tMinLambdaMask) .* tThetaA;
% Step 6 - T Matrix
% n1 = (1 + mLambda1 + mLambda2) .^ (-power1 / 2);
% n2 = (1 + mLambda1 + mLambda2) .^ (-power2 / 2);
n1 = (1 + mLambda1 + mLambda2) .^ (-power1);
n2 = (1 + mLambda1 + mLambda2) .^ (-power2);
tT(:, :, 1) = n1 .* (tTheta1(:, :, 1) .* tTheta1(:, :, 1)) + ...
n2 .* (tTheta2(:, :, 1) .* tTheta2(:, :, 1));
tT(:, :, 2) = n1 .* (tTheta1(:, :, 1) .* tTheta1(:, :, 2)) + ...
n2 .* (tTheta2(:, :, 1) .* tTheta2(:, :, 2));
tT(:, :, 3) = n1 .* (tTheta1(:, :, 2) .* tTheta1(:, :, 2)) + ...
n2 .* (tTheta2(:, :, 2) .* tTheta2(:, :, 2));
end