-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathR - Imbalanced Classes
215 lines (177 loc) · 5.4 KB
/
R - Imbalanced Classes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
closeAllConnections()
rm(list=ls())
setwd("/Volumes/16 DOS/R_nbs")
logitML<-read.csv("questao1.csv",sep=";",header=TRUE,fileEncoding="latin1")
dim(logitML)
head(logitML)
summary(logitML)
head(logitML,2)
sum(is.na(logitML[,2]))
apply(is.na(logitML),2,sum)
unique(logitML$Avaliação.de.desempenho)
c(unique(logitML$Avaliação.de.desempenho))
logitML$Avaliação.de.desempenho<-factor(logitML$Avaliação.de.desempenho, labels =c(unique(logitML$Avaliação.de.desempenho)))
logitML$Avaliação.de.desempenho<-as.numeric(logitML$Avaliação.de.desempenho)
unique(logitML$Sexo)
logitML$Sexo<-factor(logitML$Sexo, labels = c(0,1))
logitML$Sexo<-as.numeric(logitML$Sexo)
c(unique(logitML$Área))
logitML$Área<-factor(logitML$Área, labels =c(unique(logitML$Área)))
logitML$Área<-as.numeric(logitML$Área)
# WORK REPLACE "," por "."
head(logitML$Turnover.mercado)
head((as.numeric(logitML$Turnover.mercado)+1)/100)
# OR
logitML$Turnover.mercado<-as.numeric(gsub("\\,",".",factor(logitML$Turnover.mercado)))
# WORK TIRAR R$
head(logitML$Salário.mensal.médio)
head(factor(logitML$Salário.mensal.médio))
f1<-gsub('[R$ ]','',factor(logitML$Salário.mensal.médio))
head(f1)
head(f2<-gsub("\\.","",f1))
logitML$Salário.mensal.médio<-as.factor(f2)
names(logitML)
# WORK DATAS PEGAR ANO
head(logitML$Data.de.nascimento)
p1<-as.Date(logitML$Data.de.nascimento,"%d/%m/%Y")
p2<-format(p1,'%Y')
logitML$Data.de.nascimento<-as.numeric(p2)
head(logitML$Data.de.admissão)
p12<-as.Date(logitML$Data.de.admissão,"%d/%m/%Y")
p22<-format(p12,'%Y')
logitML$Data.de.admissão<-as.numeric(p22)
logitML$Data.de.nascimento
p123<-as.Date(logitML$Data.de.nascimento,"%d/%m/%Y")
p223<-format(p1,'%Y')
logitML$Data.de.nascimento<-as.numeric(p223)
logitML$X<-NULL
# Imbalanced Classes for Target Variable
sum(logitML[1]==1)
cor(logitML[,c(1,2,3,4,5,6,7,9,10)])
par(mfrow=c(3,4))
for (i in c(1,2,3,4,5,6,7,9,10,11,12,14)){
hist(logitML[,i],col="green",main=names(logitML)[i])
}
#TESTE T
t.test(logitML$Desligamento[logitML$Ex.trainee==0],logitML$Desligamento[logitML$Ex.trainee==1])
par(mfrow=c(1,1))
dim(logitML)
for (i in c(1,2,3,4,5,6,7,9,10,11,12,13,14)){print(c(i,mean(logitML[c(which(logitML$Desligamento==0)),i])-
mean(logitML[c(which(logitML$Desligamento==1)),i])))
}
dim(logitML)
x_train<-logitML[,c(6,7,10)]
y_train<-logitML[,1]
x<-data.frame(cbind(x_train,y_train))
logistic<-glm(y_train~x_train[,1]+x_train[,2]+x_train[,3],data=x,family="binomial")
summary(logistic)
names(logistic)
logistic$residuals
x_test<-logitML[1500:2000,c(6,7,10)]
x_train<-x_test
y_train<-logitML[1500:2000,1]
length(which(y_train==1))/length(y_train)
predicted<-predict(logistic,newdata = data.frame(cbind(x_train,y_train)))
predicted
m=predicted
dim(data.frame(predicted))
### # P logistic result
length(predicted)
d=1
k=c()
while(d<length(predicted)+1){
k[[d]]<-2.71^m[[d]]/(1+2.71^m[[d]])
d<-d+1
}
k
## HILL CLIMBING ALGORITHM
t=c()
r=1
for (i in seq(0.04,0.09,0.0001)){
resultlogit<-k
resultlogit[resultlogit>i]<-1
resultlogit[resultlogit<1]<-0
t[[r]]<-length(which(y_train+resultlogit==2))/length(which(y_train==1))+length(which(y_train+resultlogit==0))/length(which(y_train==0))
r=r+1
}
plot(t,main="Hill Climbimg",col="red")
ii<-which.max(t)
resultlogit<-k
resultlogit[resultlogit>seq(0.04,0.09,0.0001)[[ii]]]<-1
resultlogit[resultlogit<1]<-0
resultlogit
### TRANSFORM TO SINGLE LIST
pred<-resultlogit
predict1<-as.numeric(pred)
y_train
predict1
j<-sum(y_train-predict1==0)/length(y_train-predict1)
table(y_train,predict1)
j
library(ROCR)
pred
y_train
p<-prediction(pred,y_train)
p
par(mfrow=c(1,1))
perform<-performance(p,measure="tpr",x.measure="fpr")
plot(perform,main="ROC")
auc<-performance(p,measure="auc")
[email protected][[1]]
#ACERTOS TRUE POSITIVE
length(which(y_train+resultlogit==2))
a<-length(which(y_train+resultlogit==2))/length(which(y_train==1))
a
#ACERTOS TRUE NEGATIVE
length(which(y_train+resultlogit==0))
b<-length(which(y_train+resultlogit==0))/length(which(y_train==0))
b
x_train<-logitML[,c(6,7,10)]
y_train<-logitML[,1]
x<-data.frame(cbind(x_train,y_train))
x_train[,1]
#BOOSTING
library("gbm")
gbm1<-gbm(x[,4]~x[,1]+x[,2]+x[,3], data=x, n.trees=1000,shrinkage=0.1,bag.fraction = 0.5,train.fraction = 0.8)
plot(gbm1)
names(gbm1)
mean(gbm1$valid.error)
gbm1$fit
z<-abs(gbm1$fit)
z[z<2]<-1
z[z>1]<-0
head(z)
z<-z[1500:2000]
#TRUE POSITIVE
a
length(which(y_train+z==2))/length(which(y_train==1))
#TRUE NEGATIVE
b
length(which(y_train+z==0))/length(which(y_train==0))
x_train<-logitML[1500:2000,c(6,7,10)]
y_train<-logitML[1500:2000,1]
x<-data.frame(cbind(x_train,y_train))
pred2<-gbm.perf(gbm1,plot.it = TRUE,oobag.curve = FALSE,overlay = TRUE,method="OOB")
pred2
print(pred2)
z-y_train
p2<-prediction(z,y_train)
perform2<-performance(p2,measure="tpr",x.measure="fpr")
auc2<-performance(p2,measure="auc")
summary(gbm1,n.trees=12)
par(mfrow=c(2,2))
plot(t,main="Hill Climbimg",col="red",pch=20,xlab="Cases",ylab="TP + TN")
plot(perform,main=c("AUC Logistic Regression",round([email protected][[1]],digits=3)))
gbm.perf(gbm1,plot.it = TRUE,oobag.curve = FALSE,overlay = TRUE,method="OOB")
plot(perform2,main=c("Area Under Curve Boosting",round([email protected][[1]],digits=3)))
auc<-performance(p,measure="auc")
#TRUE POSITIVE
a
length(which(y_train+z==2))/length(which(y_train==1))
#TRUE NEGATIVE
b
length(which(y_train+z==0))/length(which(y_train==0))
# AREA UNDER CURVE LOGISTIC REGRESSION
[email protected][[1]]
# AREA UNDER CURVE BOOSTING
[email protected][[1]]