-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsingle_test_sanet.py
235 lines (195 loc) · 9.38 KB
/
single_test_sanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
import torch
import os
import traceback
import time
import nrrd
import sys
import matplotlib.pyplot as plt
import logging
import argparse
import torch.nn.functional as F
from scipy.stats import norm
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.autograd import Variable
from torch.nn.parallel.data_parallel import data_parallel
from scipy.ndimage.measurements import label
from scipy.ndimage import center_of_mass
from net.da_sanet.sanet import SANet
from dataset.collate import train_collate, test_collate, eval_collate
from dataset.uni_bbox_reader import BboxReader
from configs.single_config import datasets_info, train_config, test_config, net_config, config
from utils.util import dice_score_seperate, get_contours_from_masks, merge_contours, hausdorff_distance
from utils.util import onehot2multi_mask, normalize, pad2factor, load_dicom_image, crop_boxes2mask_single, \
npy2submission
import pandas as pd
from evaluationScript.uni_noduleCADEvaluation import noduleCADEvaluation
plt.rcParams['figure.figsize'] = (24, 16)
plt.switch_backend('agg')
this_module = sys.modules[__name__]
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = argparse.ArgumentParser(description='PyTorch Detector')
parser.add_argument('--net', '-m', metavar='NET', default=train_config['net'],
help='neural net')
parser.add_argument("--mode", type=str, default='eval',
help="you want to test or val")
parser.add_argument('--ckpt', default=test_config['checkpoint'], type=str, metavar='CKPT',
help='checkpoint to use')
# parser.add_argument("--dicom-path", type=str, default=None,
# help="path to dicom files of patient")
parser.add_argument('--out_dir', default=test_config['out_dir'], type=str, metavar='OUT',
help='path to save the results')
parser.add_argument('--test_name', default=datasets_info['test_name'], type=str,
help='test set name')
parser.add_argument('--data_dir', default=datasets_info['data_dir'], type=str, metavar='OUT',
help='path to load data')
parser.add_argument('--annotation_dir', default=datasets_info['annotation_dir'], type=str, metavar='OUT',
help='path to load annotation')
parser.add_argument('--augtype', default=datasets_info['augtype'], type=str, metavar='OUT',
help='augment type')
def main():
logging.basicConfig(format='[%(levelname)s][%(asctime)s] %(message)s', level=logging.INFO)
args = parser.parse_args()
if args.mode == 'eval':
net = args.net
initial_checkpoint = args.ckpt
out_dir = args.out_dir
test_name = args.test_name
data_dir = args.data_dir
annotation_dir = args.annotation_dir
label_types = config['label_types'][0]
augtype = args.augtype
# num_workers = config['num_workers']
num_workers = 16
net = getattr(this_module, net)(config)
net = net.cuda()
# print(net)
if initial_checkpoint:
print('[Loading model from %s]' % initial_checkpoint)
checkpoint = torch.load(initial_checkpoint)
# out_dir = checkpoint['out_dir']
epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'], strict=True)
else:
print('No model weight file specified')
return
print('out_dir', out_dir)
save_dir = os.path.join(out_dir, 'res', str(epoch))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if not os.path.exists(os.path.join(save_dir, 'FROC')):
os.makedirs(os.path.join(save_dir, 'FROC'))
if label_types == 'bbox':
dataset = BboxReader(data_dir, test_name, augtype, config, mode='eval')
# else:
# dataset = LUNA16BboxReader(data_dir, test_name, augtype, config, mode='eval')
test_loader = DataLoader(dataset, batch_size=1, shuffle=False,
num_workers=num_workers, pin_memory=False, collate_fn=train_collate)
eval(net, test_loader, annotation_dir, data_dir, save_dir)
else:
logging.error('Mode %s is not supported' % (args.mode))
def eval(net, dataset, annotation_dir, data_dir, save_dir=None):
net.set_mode('eval')
net.use_rcnn = True
aps = []
dices = []
print('Total # of eval data %d' % (len(dataset)))
for i, (input, truth_bboxes, truth_labels) in tqdm(enumerate(dataset), total=len(dataset), desc='eval'):
try:
input = Variable(input).cuda()
truth_bboxes = np.array(truth_bboxes)
truth_labels = np.array(truth_labels)
pid = dataset.dataset.filenames[i]
# print('[%d] Predicting %s' % (i, pid))
with torch.no_grad():
# input = input.cuda().unsqueeze(0)
net.forward(input, truth_bboxes, truth_labels)
rpns = net.rpn_proposals.cpu().numpy()
detections = net.detections.cpu().numpy()
ensembles = net.ensemble_proposals.cpu().numpy()
# print('rpn', rpns.shape)
# print('detection', detections.shape)
# print('ensemble', ensembles.shape)
if len(rpns):
rpns = rpns[:, 1:]
np.save(os.path.join(save_dir, '%s_rpns.npy' % (pid)), rpns)
if len(detections):
detections = detections[:, 1:-1]
np.save(os.path.join(save_dir, '%s_rcnns.npy' % (pid)), detections)
if len(ensembles):
ensembles = ensembles[:, 1:]
np.save(os.path.join(save_dir, '%s_ensembles.npy' % (pid)), ensembles)
# Clear gpu memory
del input, truth_bboxes, truth_labels
torch.cuda.empty_cache()
except Exception as e:
del input, truth_bboxes, truth_labels
torch.cuda.empty_cache()
traceback.print_exc()
print
return
# Generate prediction csv for the use of performing FROC analysis
# Save both rpn and rcnn results
rpn_res = []
rcnn_res = []
ensemble_res = []
for pid in dataset.dataset.filenames:
if os.path.exists(os.path.join(save_dir, '%s_rpns.npy' % (pid))):
rpns = np.load(os.path.join(save_dir, '%s_rpns.npy' % (pid)))
# rpns[:, 4] = (rpns[:, 4] + rpns[:, 5] + rpns[:, 6]) / 3
# rpns = rpns[:, [3, 2, 1, 4, 0]]
rpns = rpns[:, [3, 2, 1, 6, 5, 4, 0]]
names = np.array([[pid]] * len(rpns))
rpn_res.append(np.concatenate([names, rpns], axis=1))
if os.path.exists(os.path.join(save_dir, '%s_rcnns.npy' % (pid))):
rcnns = np.load(os.path.join(save_dir, '%s_rcnns.npy' % (pid)))
# rcnns[:, 4] = (rcnns[:, 4] + rcnns[:, 5] + rcnns[:, 6]) / 3
# rcnns = rcnns[:, [3, 2, 1, 4, 0]]
rcnns = rcnns[:, [3, 2, 1, 6, 5, 4, 0]]
names = np.array([[pid]] * len(rcnns))
rcnn_res.append(np.concatenate([names, rcnns], axis=1))
if os.path.exists(os.path.join(save_dir, '%s_ensembles.npy' % (pid))):
ensembles = np.load(os.path.join(save_dir, '%s_ensembles.npy' % (pid)))
# ensembles[:, 4] = (ensembles[:, 4] + ensembles[:, 5] + ensembles[:, 6]) / 3
# ensembles = ensembles[:, [3, 2, 1, 4, 0]]
ensembles = ensembles[:, [3, 2, 1, 6, 5, 4, 0]]
names = np.array([[pid]] * len(ensembles))
ensemble_res.append(np.concatenate([names, ensembles], axis=1))
rpn_res = np.concatenate(rpn_res, axis=0)
rcnn_res = np.concatenate(rcnn_res, axis=0)
ensemble_res = np.concatenate(ensemble_res, axis=0)
col_names = ['series_id', 'x_center', 'y_center', 'z_center', 'w_mm', 'h_mm', 'd_mm', 'probability']
eval_dir = os.path.join(save_dir, 'FROC')
rpn_submission_path = os.path.join(eval_dir, 'submission_rpn.csv')
rcnn_submission_path = os.path.join(eval_dir, 'submission_rcnn.csv')
ensemble_submission_path = os.path.join(eval_dir, 'submission_ensemble.csv')
df = pd.DataFrame(rpn_res, columns=col_names)
df.to_csv(rpn_submission_path, index=False)
df = pd.DataFrame(rcnn_res, columns=col_names)
df.to_csv(rcnn_submission_path, index=False)
df = pd.DataFrame(ensemble_res, columns=col_names)
df.to_csv(ensemble_submission_path, index=False)
# Start evaluating
if not os.path.exists(os.path.join(eval_dir, 'rpn')):
os.makedirs(os.path.join(eval_dir, 'rpn'))
if not os.path.exists(os.path.join(eval_dir, 'rcnn')):
os.makedirs(os.path.join(eval_dir, 'rcnn'))
if not os.path.exists(os.path.join(eval_dir, 'ensemble')):
os.makedirs(os.path.join(eval_dir, 'ensemble'))
noduleCADEvaluation(annotation_dir, data_dir, dataset.dataset.set_name, rpn_submission_path, os.path.join(eval_dir, 'rpn'))
# noduleCADEvaluation(annotation_dir, data_dir, dataset.dataset.set_name, rcnn_submission_path, os.path.join(eval_dir, 'rcnn'))
#
# noduleCADEvaluation(annotation_dir, data_dir, dataset.dataset.set_name, ensemble_submission_path,
# os.path.join(eval_dir, 'ensemble'))
print
def eval_single(net, input):
with torch.no_grad():
input = input.cuda().unsqueeze(0)
logits = net.forward(input)
logits = logits[0]
masks = logits.cpu().data.numpy()
masks = (masks > 0.5).astype(np.int32)
return masks
if __name__ == '__main__':
main()