-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualization.py
88 lines (80 loc) · 4.29 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from data import dataset
from absl import logging
def plot_preds_vs_ground_truth_single_step(log_dir, env, agent, total_time_h, max_attribute_val, step,
env_implementation, data_summary, prefix="eval", use_rnn_state=True):
fig, ax = plt.subplots()
preds, ground_truth = [], []
time_step = env.reset()
rnn_state = agent.policy.get_initial_state(batch_size=1)
while not time_step.is_last():
action_step, rnn_state, _ = agent.policy.action(time_step, rnn_state)
if use_rnn_state:
if env_implementation == "tf":
time_step = env.step(action_step, rnn_state)
elif env_implementation == "gym":
time_step = env.step(action_step)
else:
time_step = env.step(action_step)
if len(data_summary) == 0:
preds.append(tf.squeeze(action_step))
ground_truth.append(time_step.reward)
else:
preds.append(dataset.undo_data_normalization_sample_wise(tf.squeeze(action_step), data_summary))
ground_truth.append(dataset.undo_data_normalization_sample_wise(time_step.reward, data_summary))
x_values = np.linspace(start=0, stop=total_time_h, num=len(preds))
ax.plot(x_values, ground_truth, color='green', label="ground_truth")
ax.plot(x_values, preds, color='blue', label="rl_prediction")
plt.legend(loc='upper right')
plt.xlabel("Measurement time in hours")
plt.ylabel("Blood glucose values")
plt.ylim([0.0, max_attribute_val + (max_attribute_val / 4)])
if not os.path.isdir(log_dir + "/visualization"):
os.makedirs(log_dir + "/visualization")
plt.savefig(log_dir + "/visualization/preds_vs_ground_truth_" + str(step) + "_" + prefix + ".pdf", dpi=300)
plt.close()
def plot_preds_vs_ground_truth_multi_step(log_dir, env, agent, total_time_h, max_attribute_val, step,
env_implementation, data_summary, ts_data, pred_horizon, prefix="eval",
use_rnn_state=True):
fig, ax = plt.subplots()
preds, ground_truth = [], []
time_step = env.reset()
rnn_state = agent.policy.get_initial_state(batch_size=1)
while not time_step.is_last():
action_step, rnn_state, _ = agent.policy.action(time_step, rnn_state)
# ground_truth_val = env._current_ground_truth
ground_truth_pos = int(tf.squeeze(env._current_data_pos))
if use_rnn_state:
if env_implementation == "tf":
time_step = env.step(action_step, rnn_state)
elif env_implementation == "gym":
time_step = env.step(action_step)
else:
time_step = env.step(action_step)
if len(data_summary) == 0:
preds.append(tf.squeeze(action_step))
ground_truth_val = ts_data[ground_truth_pos:ground_truth_pos + pred_horizon]
ground_truth.append(ground_truth_val)
else:
preds.append(dataset.undo_data_normalization_sample_wise(tf.squeeze(action_step), data_summary))
ground_truth_val = ts_data[ground_truth_pos:ground_truth_pos + pred_horizon]
ground_truth.append(dataset.undo_data_normalization_sample_wise(tf.squeeze(ground_truth_val), data_summary))
preds = tf.concat(preds, -1)
ground_truth = tf.concat(ground_truth, -1)
logging.info("Num pred: {}, Num ground truth: {}, Len data set: {}".format(preds.shape[0],
ground_truth.shape[0],
len(ts_data)))
x_values = np.linspace(start=0, stop=total_time_h, num=len(preds))
ax.plot(x_values, ground_truth, color='green', label="ground_truth")
ax.plot(x_values, preds, color='blue', label="rl_prediction")
plt.legend(loc='upper right')
plt.xlabel("Measurement time in hours")
plt.ylabel("Blood glucose values")
plt.ylim([0.0, max_attribute_val + (max_attribute_val / 4)])
if not os.path.isdir(log_dir + "/visualization"):
os.makedirs(log_dir + "/visualization")
plt.savefig(log_dir + "/visualization/preds_vs_ground_truth_" + str(step) + "_" + prefix + ".pdf", dpi=300)
plt.close()