-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapproximate_edit_distance.rs
224 lines (203 loc) · 9.47 KB
/
approximate_edit_distance.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use std::fmt::Debug;
use std::hash::Hash;
use ndarray::{Array2};
use petgraph::Graph;
use crate::graph_edit_distance::{calculate_cost_matrix, create_indexed_graph, IndexNodePair, munkres_min_cost};
pub fn approximate_aed_graph_edit_distance<N, E>(graph1: Graph<N, E, petgraph::Directed>, graph2: Graph<N, E, petgraph::Directed>) -> i32
where N: PartialEq + Eq + Clone + Debug + Hash, E: PartialEq + Eq + Clone
{
let (indexed_nodes_1, indexed_nodes_2, _indexed_edges_1, _indexed_edges_2) = create_indexed_graph(&graph1, &graph2);
println!("Graphs indexed");
let mut node_matrix_cost = calculate_cost_matrix(&indexed_nodes_1, &indexed_nodes_2);
println!("node cost matrix calced: {:?}", node_matrix_cost.dim());
add_edge_cost(&mut node_matrix_cost, &indexed_nodes_1, &indexed_nodes_2);
println!("edge cost matrix calced");
let star_matrix = munkres_min_cost(&mut node_matrix_cost.clone());
println!("star matrix cost calced");
calculate_min_cost(&node_matrix_cost, &star_matrix)
}
pub fn approximate_hed_graph_edit_distance<N, E>(graph1: &Graph<N, E, petgraph::Directed>, graph2: &Graph<N, E, petgraph::Directed>, scoring: DistanceScoring) -> f32
where N: PartialEq + Eq + Clone + Debug + Hash, E: PartialEq + Eq + Clone
{
let (indexed_nodes_1, indexed_nodes_2, _indexed_edges_1, _indexed_edges_2) = create_indexed_graph(graph1, graph2);
println!("Nodes_1: {}, Edges_1: {}, Nodes_2: {}, Edges_2: {}", indexed_nodes_1.len(),
indexed_nodes_1.iter().map(|x| x.number_of_edges).sum::<i32>() / 2,
indexed_nodes_2.len(), indexed_nodes_2.iter().map(|x| x.number_of_edges).sum::<i32>() / 2);
let hed = hausdorff_edit_distance(&indexed_nodes_1, &indexed_nodes_2);
match scoring {
DistanceScoring::Absolute => hed,
DistanceScoring::Normalized => {
let max_nodes = indexed_nodes_1.len().max(indexed_nodes_2.len()) as i32;
let max_hed: f32 = (max_nodes + indexed_nodes_1.iter().map(|x| x.number_of_edges).sum::<i32>() / 2
+ indexed_nodes_2.iter().map(|x| x.number_of_edges).sum::<i32>() / 2) as f32;
println!("{}, {}", hed, max_hed);
1.0 - (hed / max_hed)
}
}
}
fn hausdorff_edit_distance<N: PartialEq + Eq + Clone + Debug + Hash>(nodes_1: &Vec<IndexNodePair<N>>, nodes_2: &Vec<IndexNodePair<N>>) -> f32
{
let mut distance_1: Vec<f32> = vec![1f32; nodes_1.len()];
let mut distance_2: Vec<f32> = vec![1f32; nodes_2.len()];
for i in 0..nodes_1.len() {
distance_1[i] += nodes_1[i].number_of_edges as f32 / 2f32;
}
for j in 0..nodes_2.len() {
distance_2[j] += nodes_2[j].number_of_edges as f32 / 2f32;
}
for i in 0..nodes_1.len() {
for j in 0..nodes_2.len() {
let mut cost_edge = hausdorff_edit_cost(
&nodes_1[i].edges,
&nodes_2[j].edges,
);
cost_edge = ((nodes_1[i].number_of_edges - nodes_2[j].number_of_edges).abs() as f32).max(cost_edge);
let sub_cost = match nodes_1[i] == nodes_2[j] {
true => 0.0,
false => 1.0
};
distance_1[i] = ((sub_cost + cost_edge / 2.0) / 2.0).min(distance_1[i]);
distance_2[j] = ((sub_cost + cost_edge / 2.0) / 2.0).min(distance_2[j]);
}
}
let distance = distance_1.iter().sum::<f32>() + distance_2.iter().sum::<f32>();
println!("Lower graph bound: {}, distance: {}", (nodes_1.len() as i32 - nodes_2.len() as i32).abs(), distance);
(nodes_1.len() as f32 - nodes_2.len() as f32).abs().max(distance)
}
fn hausdorff_edit_cost<N: PartialEq + Eq + Clone + Debug + Hash>(
edges_1: &Vec<(N, N)>,
edges_2: &Vec<(N, N)>,
) -> f32
{
let mut cost_1: Vec<f32> = vec![1.0 / 2.0; edges_1.len()];
let mut cost_2: Vec<f32> = vec![1.0/ 2.0; edges_2.len()];
// let mut sub_cost_time = chrono::Duration::zero();
for i in 0..edges_1.len() {
for j in 0..edges_2.len() {
if edges_1[i] == edges_2[j] {
(cost_1[i], cost_2[j]) = (0.0, 0.0);
}
// let sub_cost = match edges_1[i] == edges_2[j] {
// true => 0.0,
// false => 1.0 / 2.0
// };
// cost_1[i] = f32::min(sub_cost, cost_1[i]);
// cost_2[j] = f32::min(sub_cost, cost_2[j]);
// sub_cost_time = sub_cost_time + (chrono::Utc::now() - before_time);
}
}
cost_1.iter().sum::<f32>() + cost_2.iter().sum::<f32>()
}
fn add_edge_cost<N: PartialEq + Eq + Clone + Debug + Hash>(cost_matrix: &mut Array2<i32>, nodes_1: &Vec<IndexNodePair<N>>, nodes_2: &Vec<IndexNodePair<N>>) {
// Substitution
for i in 0..nodes_1.len() {
for j in 0..nodes_2.len() {
println!("{}, {}", i, j);
cost_matrix[(i, j)] += calculate_edge_substitution_cost(&nodes_1[i], &nodes_2[j]);
}
}
// Bottom left node insertion
for j in 0..nodes_2.len() {
cost_matrix[(j + nodes_1.len(), j)] += nodes_2[j].number_of_edges;
}
// Top right node deletion
for i in 0..nodes_1.len() {
cost_matrix[(i, i + nodes_2.len())] += nodes_1[i].number_of_edges;
}
}
fn calculate_edge_substitution_cost<N: PartialEq + Eq + Clone + Debug + Hash>(node_1: &IndexNodePair<N>, node_2: &IndexNodePair<N>) -> i32 {
let edge_cost_matrix = calculate_cost_matrix(&node_1.index_edges(), &node_2.index_edges());
let star_matrix = munkres_min_cost(&mut edge_cost_matrix.clone());
calculate_min_cost(&edge_cost_matrix, &star_matrix)
}
fn calculate_min_cost(cost_matrix: &Array2<i32>, star_matrix: &Array2<bool>) -> i32 {
let mut min_cost = 0;
for i in 0..star_matrix.nrows() {
for j in 0..star_matrix.ncols() {
if star_matrix[(i, j)] {
min_cost += cost_matrix[(i, j)];
}
}
}
min_cost
}
pub enum DistanceScoring {
Absolute,
Normalized,
}
#[cfg(test)]
mod tests {
use ndarray::{arr2, Array2};
use petgraph::Graph;
use crate::approximate_edit_distance::{add_edge_cost, approximate_hed_graph_edit_distance, calculate_min_cost, DistanceScoring};
use crate::graph_edit_distance::{calculate_cost_matrix, create_indexed_graph, munkres_min_cost};
use crate::graph_edit_distance::tests::{setup_graph, setup_graph_2};
#[test]
fn approximate_hed_test_1() {
let (graph1, graph2) = setup_graph();
let actual_similarity = approximate_hed_graph_edit_distance(&graph1, &graph2, DistanceScoring::Normalized);
let expected_similarity: f32 = 1.0 - (4.0/8.0);
assert!(actual_similarity >= expected_similarity);
}
#[test]
fn approximate_hed_test_2() {
let (graph1, graph2) = setup_graph_2();
let actual_similarity = approximate_hed_graph_edit_distance(&graph1, &graph2, DistanceScoring::Normalized);
let expected_similarity: f32 = 1.0 - (5.0/8.0);
assert!(actual_similarity > expected_similarity);
}
#[test]
fn approximate_hed_max_test_2() {
let (graph1, _) = setup_graph();
let similarity = approximate_hed_graph_edit_distance(&graph1, &Graph::new(), DistanceScoring::Normalized);
assert_eq!(similarity, 0.0);
}
#[test]
fn approximate_ged_test() {
let (graph1, graph2) = setup_graph();
let (indexed_nodes_1, indexed_nodes_2, _indexed_edges_1, _indexed_edges_2) = create_indexed_graph(&graph1, &graph2);
let mut cost_matrix = calculate_cost_matrix(&indexed_nodes_1, &indexed_nodes_2);
add_edge_cost(&mut cost_matrix, &indexed_nodes_1, &indexed_nodes_2);
let star_matrix= munkres_min_cost(&mut cost_matrix.clone());
let actual_cost = calculate_min_cost(&cost_matrix, &star_matrix);
assert_eq!(actual_cost, 6);
}
#[test]
fn calculate_edge_substitution_cost_test() {
let (graph1, graph2) = setup_graph();
let (indexed_nodes_1, indexed_nodes_2, _indexed_edges_1, _indexed_edges_2) = create_indexed_graph(&graph1, &graph2);
let mut cost_matrix = calculate_cost_matrix(&indexed_nodes_1, &indexed_nodes_2);
let expected_edge_substitution_added_cost_matrix = arr2(&[
[1, 2, 1, 2, 2, i32::MAX, i32::MAX, i32::MAX],
[2, 2, 2, 2, i32::MAX, 2, i32::MAX, i32::MAX],
[1, 2, 1, 2, i32::MAX, i32::MAX, 2, i32::MAX],
[2, 2, 2, 2, i32::MAX, i32::MAX, i32::MAX, 2],
[2, i32::MAX, i32::MAX, i32::MAX, 0, 0, 0, 0],
[i32::MAX, 2, i32::MAX, i32::MAX, 0, 0, 0, 0],
[i32::MAX, i32::MAX, 2, i32::MAX, 0, 0, 0, 0],
[i32::MAX, i32::MAX, i32::MAX, 2, 0, 0, 0, 0],
]);
add_edge_cost(&mut cost_matrix, &indexed_nodes_1, &indexed_nodes_2);
assert_eq!(cost_matrix, expected_edge_substitution_added_cost_matrix);
}
#[test]
fn calculate_min_cost_test() {
let (cost_matrix, star_matrix) = setup_cost_star_matrix();
assert_eq!(1 + 1 + 0, calculate_min_cost(&cost_matrix, &star_matrix));
}
fn setup_cost_star_matrix() -> (Array2<i32>, Array2<bool>) {
let cost_matrix: Array2<i32> = arr2(&[
[1, 1, 1, 1, i32::MAX, i32::MAX],
[1, 1, 1, i32::MAX, 1, i32::MAX],
[0, 1, 1, i32::MAX, i32::MAX, 1],
[1, i32::MAX, i32::MAX, 0, 0, 0],
[i32::MAX, 1, i32::MAX, 0, 0, 0],
[i32::MAX, i32::MAX, 1, 0, 0, 0],
]);
let mut star_matrix = Array2::from_elem((8, 8), false);
star_matrix[(0, 3)] = true;
star_matrix[(1, 2)] = true;
star_matrix[(2, 0)] = true;
(cost_matrix, star_matrix)
}
}