-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlocality.rs
569 lines (529 loc) · 23.9 KB
/
locality.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
use std::fs::File;
use std::io::{BufWriter, Write, Result};
use std::path::Path;
use std::sync::Arc;
use std::sync::mpsc::{Receiver, Sender};
use log::error;
use petgraph::Graph;
use rand::prelude::SliceRandom;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use serde::{Serialize, Deserialize};
use crate::ga::encoding::delay_encoding::{DelayMapPhenotype, DelayGenotype};
use crate::ga::encoding::{ExtendedPhenotype, num_genes};
use crate::ga::encoding::priority_encoding::{PriorityGenotype, PriorityMapPhenotype};
use crate::ga::fitness::ExtendedFitness;
use crate::node_state::{MessageTypeDependencyEvent, MutexNodeStates};
use crate::trace_comparisons::transform_to_message_type_graph;
pub struct PriorityLocalityExperiment<F: ExtendedFitness> {
priority_result_file: BufWriter<File>,
scheduler_sender: Sender<PriorityMapPhenotype>,
scheduler_receiver: Receiver<F>,
node_states: Arc<MutexNodeStates>
}
impl<F: ExtendedFitness> PriorityLocalityExperiment<F> {
pub fn new(scheduler_sender: Sender<PriorityMapPhenotype>, scheduler_receiver: Receiver<F>, node_states: Arc<MutexNodeStates>) -> Self {
let priority_file = File::create(Path::new("priority_locality.txt")).expect("Creating result file failed");
Self {
priority_result_file: BufWriter::new(priority_file),
scheduler_sender,
scheduler_receiver,
node_states
}
}
pub fn run_locality_experiment_priorities(&mut self) {
let mut rng = ChaCha8Rng::seed_from_u64(1);
// Maximum kendall tau distance is 0.5n(n-1), take fourth of that:
let min_distance = 0.5 * 260.0 * 259.0 / 4.0;
println!("Starting priority locality experiment");
let distant_priority_genotypes: Vec<PriorityGenotype> = sample_n_distant_priority_genotypes(10, num_genes(), min_distance as u64, &mut rng);
println!("Done creating genotypes");
let mut neighbors_list: Vec<Vec<PriorityGenotype>> = vec![];
for genotype in distant_priority_genotypes.iter() {
let neighbors = sample_n_neighbors_priority_genotypes(10, &genotype, &mut rng);
if neighbors.iter().map(|neighbor| priority_genotype_kendall_tau_distance(&neighbor, &genotype)).any(|x| x != 1) {
println!("Wrong neighboring priority genotypes!!!");
}
neighbors_list.push(neighbors);
}
println!("Done creating neighbors");
let mut genotype_phenotype_pairs = vec![];
// Get the phenotypes / schedules / trace graphs for these (10 genotypes + 10 neighbors for each genotype = 110 trace graphs)
for i in 0..distant_priority_genotypes.len() {
println!("Starting evaluation for new genotype: {}", i);
self.execute_priority_schedule(&distant_priority_genotypes[i]);
let genotype = distant_priority_genotypes[i].clone();
let phenotype = transform_to_message_type_graph(&self.node_states.get_dependency_graph());
genotype_phenotype_pairs.push(PriorityGenotypePhenotypePair((genotype, phenotype, EvaluationType::BaseGenotype)));
for j in 0..neighbors_list[i].len() {
println!("Starting evaluation for neighbor {} of {}", j, i);
self.execute_priority_schedule(&neighbors_list[i][j]);
let genotype = neighbors_list[i][j].clone();
let phenotype = transform_to_message_type_graph(&self.node_states.get_dependency_graph());
genotype_phenotype_pairs.push(PriorityGenotypePhenotypePair((genotype, phenotype, EvaluationType::NeighborGenotype)));
}
}
self.write_priority_genotype_phenotype_pairs_to_file(&genotype_phenotype_pairs).unwrap();
println!("Finished run. exiting...");
std::process::exit(0);
}
fn execute_priority_schedule(&self, priority_genotype: &PriorityGenotype) {
self.scheduler_sender.send(PriorityMapPhenotype::from_genes(&priority_genotype)).expect("Scheduler receiver failed");
// If the event cap is exceeded, something went wrong and we need to run again
match self.scheduler_receiver.recv() {
Ok(fit) => if fit == F::lowest_possible_fitness() {
self.execute_priority_schedule(&priority_genotype);
}
Err(_) => {}
}
}
fn write_priority_genotype_phenotype_pairs_to_file(&mut self, genotype_phenotype_pairs: &Vec<PriorityGenotypePhenotypePair>) -> Result<()> {
let buf = serde_json::to_vec(genotype_phenotype_pairs)?;
self.priority_result_file.write_all(&buf[..])?;
Ok(())
}
}
pub struct DelayLocalityExperiment<F: ExtendedFitness> {
delay_result_file: BufWriter<File>,
scheduler_sender: Sender<DelayMapPhenotype>,
scheduler_receiver: Receiver<F>,
node_states: Arc<MutexNodeStates>
}
impl<F: ExtendedFitness> DelayLocalityExperiment<F> {
pub fn new(scheduler_sender: Sender<DelayMapPhenotype>, scheduler_receiver: Receiver<F>, node_states: Arc<MutexNodeStates>) -> Self {
let delay_file = File::create(Path::new("delay_locality.txt")).expect("Creating result file failed");
Self {
delay_result_file: BufWriter::new(delay_file),
scheduler_sender,
scheduler_receiver,
node_states
}
}
pub fn run_locality_experiment_delays(&mut self) {
let mut rng = ChaCha8Rng::seed_from_u64(2);
// Maximum euclidean distance is n.sqrt()*(max - min) 260.sqrt() * 4000, take half that:
let max_distance = 260f64.sqrt() * 4000f64 / 4.0;
println!("Starting delay locality experiment");
let distant_delay_genotypes: Vec<DelayGenotype> = sample_n_distant_delay_genotypes(10, num_genes(), max_distance, &mut rng);
println!("Done creating genotypes");
let mut neighbors_list: Vec<Vec<DelayGenotype>> = vec![];
for genotype in distant_delay_genotypes.iter() {
let neighbors = sample_n_neighbors_delay_genotypes(10, &genotype, &mut rng);
neighbors_list.push(neighbors);
}
println!("Done creating neighbors");
let mut genotype_phenotype_pairs = vec![];
// Get the phenotypes / schedules / trace graphs for these (10 genotypes + 10 neighbors for each genotype = 110 trace graphs)
for i in 0..distant_delay_genotypes.len() {
println!("Starting evaluation for new genotype: {}", i);
self.execute_delay_schedule(&distant_delay_genotypes[i]);
let genotype = distant_delay_genotypes[i].clone();
let phenotype = transform_to_message_type_graph(&self.node_states.get_dependency_graph());
genotype_phenotype_pairs.push(DelayGenotypePhenotypePair((genotype, phenotype, EvaluationType::BaseGenotype)));
for j in 0..neighbors_list[i].len() {
println!("Starting evaluation for neighbor {} of {}", j, i);
self.execute_delay_schedule(&neighbors_list[i][j]);
let genotype = neighbors_list[i][j].clone();
let phenotype = transform_to_message_type_graph(&self.node_states.get_dependency_graph());
genotype_phenotype_pairs.push(DelayGenotypePhenotypePair((genotype, phenotype, EvaluationType::NeighborGenotype)));
}
}
self.write_delay_genotype_phenotype_pairs_to_file(&genotype_phenotype_pairs).unwrap();
println!("Finished run. exiting...");
std::process::exit(0);
}
fn execute_delay_schedule(&self, delay_genotype: &DelayGenotype) {
self.scheduler_sender.send(DelayMapPhenotype::from_genes(&delay_genotype)).expect("Scheduler receiver failed");
// If the event cap is exceeded, something went wrong and we need to run again
match self.scheduler_receiver.recv() {
Ok(fit) => if fit == F::lowest_possible_fitness() {
self.execute_delay_schedule(&delay_genotype);
}
Err(_) => {}
}
}
fn write_delay_genotype_phenotype_pairs_to_file(&mut self, genotype_phenotype_pairs: &Vec<DelayGenotypePhenotypePair>) -> Result<()> {
let buf = serde_json::to_vec(genotype_phenotype_pairs)?;
self.delay_result_file.write_all(&buf[..])?;
Ok(())
}
}
#[derive(Serialize, Deserialize, Debug)]
struct DelayGenotypePhenotypePair((DelayGenotype, Graph<MessageTypeDependencyEvent, ()>, EvaluationType));
#[derive(Serialize, Deserialize, Debug)]
struct PriorityGenotypePhenotypePair((PriorityGenotype, Graph<MessageTypeDependencyEvent, ()>, EvaluationType));
#[derive(Serialize, Deserialize, Debug, PartialEq)]
enum EvaluationType {
BaseGenotype,
NeighborGenotype,
}
pub fn run_locality_experiment_priorities<F: ExtendedFitness>(scheduler_sender: Sender<PriorityMapPhenotype>, scheduler_receiver: Receiver<F>, node_states: Arc<MutexNodeStates>) {
let mut loc_exp = PriorityLocalityExperiment::new(scheduler_sender, scheduler_receiver, node_states);
loc_exp.run_locality_experiment_priorities();
}
pub fn run_locality_experiment_delays<F: ExtendedFitness>(scheduler_sender: Sender<DelayMapPhenotype>, scheduler_receiver: Receiver<F>, node_states: Arc<MutexNodeStates>) {
let mut loc_exp = DelayLocalityExperiment::new(scheduler_sender, scheduler_receiver, node_states);
loc_exp.run_locality_experiment_delays();
}
/// Sample n closest neighbors of delay genotype (+1 / -1 for one gene)
pub fn sample_n_neighbors_delay_genotypes(n: usize, genotype: &DelayGenotype, rng: &mut impl Rng) -> Vec<DelayGenotype> {
// Technically we can sample 2*num_genes distinct neighbors (up and down)
if n > genotype.len() {
error!("Cannot sample more than num_genes distinct neighbors");
return vec![];
}
let mut res = vec![];
// Create n distinct gene indices where a new neighbor will be created from
for x in rand::seq::index::sample(rng, genotype.len(), n) {
let mut new_neighbor = genotype.clone();
// Either add 1 or subtract 1
new_neighbor[x] = new_neighbor[x] -1 + (rng.gen_bool(0.5) as u32 * 2);
res.push(new_neighbor);
};
res
}
/// Sample n closest neighbors of priority genotype (two adjacent genes swapped)
pub fn sample_n_neighbors_priority_genotypes(n: usize, genotype: &PriorityGenotype, rng: &mut impl Rng) -> Vec<PriorityGenotype> {
if n > genotype.len()-1 {
error!("Cannot sample more than num_genes - 1 distinct neighbors");
return vec![];
}
let mut res = vec![];
// Create n distinct indices where genes will be swapped to create a new neighbor
for i in rand::seq::index::sample(rng, genotype.len()-1, n) {
let mut new_neighbor = genotype.clone();
// Swap the genes at the i and i+1
new_neighbor[i] = new_neighbor[i+1];
new_neighbor[i+1] = genotype[i];
res.push(new_neighbor);
};
res
}
pub fn sample_n_distant_delay_genotypes(n: usize, num_genes: usize, min_distance: f64, rng: &mut impl Rng) -> Vec<DelayGenotype> {
let mut res = vec![];
for _ in 0..n {
loop {
let genotype = sample_delays_genotype(num_genes.clone(), 0, 4000, rng);
if res.is_empty() || res.iter().all(|x| delay_genotype_euclidean_distance(&genotype, x) > min_distance) {
res.push(genotype);
break;
}
}
}
res
}
pub fn sample_n_distant_priority_genotypes(n: usize, num_genes: usize, min_distance: u64, rng: &mut impl Rng) -> Vec<PriorityGenotype> {
let mut res = vec![];
for _ in 0..n {
loop {
let genotype = sample_priority_genotype(num_genes.clone(), rng);
if res.is_empty() || res.iter().all(|x| priority_genotype_kendall_tau_distance(&genotype, x) > min_distance) {
res.push(genotype);
break;
}
}
}
res
}
/// 4 * 4^2 .sqrt() = 8
/// 2 * 4 = 8
/// Maximum euclidean distance is n*((max - min)^2).sqrt()
#[allow(unused)]
pub fn delay_genotype_euclidean_distance(genotype_1: &DelayGenotype, genotype_2: &DelayGenotype) -> f64 {
if genotype_1.len() != genotype_2.len() {
return f64::NAN
}
let mut res = 0;
for (gene_1, gene_2) in genotype_1.iter().zip(genotype_2.iter()) {
res += gene_2.abs_diff(*gene_1).pow(2);
}
(res as f64).sqrt()
}
/// Maximum kendall tau distance is 0.5n(n-1)
#[allow(unused)]
pub fn priority_genotype_kendall_tau_distance(genotype_1: &PriorityGenotype, genotype_2: &PriorityGenotype) -> u64 {
if genotype_1.len() != genotype_2.len() {
error!("Genotypes not of equal length");
return 0;
}
let mut index_1 = vec![0; genotype_1.len()];
let mut index_2 = vec![0; genotype_2.len()];
for i in 0..genotype_1.len() {
index_1[genotype_1[i]] = i as i32;
index_2[genotype_2[i]] = i as i32;
}
let mut res = 0;
for i in 0..genotype_1.len()-1 {
for j in i+1..genotype_2.len() {
// let a = genotype_1[i] < genotype_1[j] && genotype_2[i] > genotype_2[j];
// let b = genotype_1[i] > genotype_1[j] && genotype_2[i] < genotype_2[j];
// if a || b {
// res += 1;
// }
let a: i32 = index_1[i] - index_1[j];
let b: i32 = index_2[i] - index_2[j];
if a * b < 0 {
res += 1;
}
}
}
res
}
#[allow(unused)]
pub fn sample_delays_genotype(n: usize, min: u32, max: u32, rng: &mut impl Rng) -> DelayGenotype {
let mut genotype = vec![];
for i in 0..n {
let gene = rng.gen_range(min..=max);
genotype.push(gene)
}
genotype
}
#[allow(unused)]
pub fn sample_priority_genotype(n: usize, rng: &mut impl Rng) -> PriorityGenotype {
let mut genotype: Vec<usize> = (0..n).collect();
genotype.shuffle(rng);
genotype
}
#[cfg(test)]
mod tests {
use std::fs;
use std::io::BufReader;
use chrono::Utc;
use itertools::{Itertools};
use rand::prelude::SliceRandom;
use rand::SeedableRng;
use rand_chacha::ChaCha8Rng;
use ged::approximate_edit_distance::{approximate_hed_graph_edit_distance, DistanceScoring};
use crate::locality::{delay_genotype_euclidean_distance, DelayGenotypePhenotypePair, priority_genotype_kendall_tau_distance, PriorityGenotypePhenotypePair, sample_delays_genotype, sample_n_distant_delay_genotypes, sample_n_distant_priority_genotypes, sample_n_neighbors_delay_genotypes, sample_n_neighbors_priority_genotypes, sample_priority_genotype};
use crate::locality::EvaluationType::{BaseGenotype, NeighborGenotype};
use crate::scaling::{mean, std_deviation};
#[test]
fn test_euclidean_distance() {
let genotype_1 = vec![1, 1, 1, 1];
let genotype_2 = vec![2, 2, 2, 2];
assert_eq!(delay_genotype_euclidean_distance(&genotype_1, &genotype_2), 2f64);
let genotype_2 = genotype_1.clone();
assert_eq!(delay_genotype_euclidean_distance(&genotype_1, &genotype_2), 0f64);
let genotype_2 = vec![5, 5, 5, 5];
assert_eq!(delay_genotype_euclidean_distance(&genotype_1, &genotype_2), 8f64);
let genotype_2 = vec![5, 5, 5, 4];
assert_eq!(delay_genotype_euclidean_distance(&genotype_1, &genotype_2), 57f64.sqrt());
let genotype_1 = vec![];
let genotype_2 = vec![];
assert_eq!(delay_genotype_euclidean_distance(&genotype_1, &genotype_2), 0f64);
}
#[test]
fn test_kendall_tau_distance() {
let genotype_1 = vec![2, 0, 1];
let genotype_2 = vec![1, 0, 2];
assert_eq!(priority_genotype_kendall_tau_distance(&genotype_1, &genotype_2), 3);
let genotype_1 = vec![0, 1, 2, 3, 4];
let genotype_2 = vec![2, 3, 0, 1, 4];
assert_eq!(priority_genotype_kendall_tau_distance(&genotype_1, &genotype_2), 4);
let genotype_2 = vec![0, 1, 2, 4, 3];
assert_eq!(priority_genotype_kendall_tau_distance(&genotype_1, &genotype_2), 1);
let genotype_2 = vec![0, 1, 3, 2, 4];
assert_eq!(priority_genotype_kendall_tau_distance(&genotype_1, &genotype_2), 1);
let genotype_2 = vec![0, 1, 4, 3, 2];
assert_eq!(priority_genotype_kendall_tau_distance(&genotype_1, &genotype_2), 3);
let genotype_1 = vec![0, 4, 1, 3, 2];
assert_eq!(priority_genotype_kendall_tau_distance(&genotype_1, &genotype_2), 1);
}
#[test]
fn test_delays_sample() {
let mut rng = ChaCha8Rng::seed_from_u64(2);
let genotype = sample_delays_genotype(10, 0, 1000, &mut rng);
let expected_genotype = vec![193, 882, 522, 32, 790, 230, 858, 222, 815, 676];
assert_eq!(genotype, expected_genotype);
}
#[test]
fn test_priorities_sample() {
let mut rng = ChaCha8Rng::seed_from_u64(2);
let genotype = sample_priority_genotype(10, &mut rng);
let expected_genotype = vec![4, 8, 2, 3, 7, 9, 1, 6, 0, 5];
assert_eq!(genotype, expected_genotype);
}
#[test]
fn test_n_distance_delay_genotypes() {
let mut rng = ChaCha8Rng::seed_from_u64(2);
let genotypes = sample_n_distant_delay_genotypes(4, 16, 2000f64, &mut rng);
for (genotype_1, genotype_2) in genotypes.iter().tuple_combinations() {
assert!(delay_genotype_euclidean_distance(genotype_1, genotype_2) > 2000f64);
}
}
///0.5n(n-1): 8 * 15 = 120
#[test]
fn test_n_distance_priority_genotypes() {
let mut rng = ChaCha8Rng::seed_from_u64(2);
let genotypes = sample_n_distant_priority_genotypes(4, 16, 30, &mut rng);
for (genotype_1, genotype_2) in genotypes.iter().tuple_combinations() {
assert!(priority_genotype_kendall_tau_distance(genotype_1, genotype_2) > 30);
}
}
#[test]
fn test_n_neighbors_delay_genotypes() {
let mut rng = ChaCha8Rng::seed_from_u64(2);
let genotype = vec![300, 300, 300, 300];
let neighbors = sample_n_neighbors_delay_genotypes(4, &genotype, &mut rng);
assert!(neighbors.iter().all_unique());
for neighbor in neighbors {
assert_eq!(delay_genotype_euclidean_distance(&neighbor, &genotype), 1f64);
}
}
#[test]
fn test_n_neighbors_priority_genotypes() {
let mut rng = ChaCha8Rng::seed_from_u64(2);
// let min_distance = 0.5 * 260.0 * 259.0 / 4.0;
// let genotype = sample_n_distant_priority_genotypes(1, 260, min_distance as u64, &mut rng)[0].clone();
// dbg!(genotype.clone());
let mut genotype: Vec<usize> = (0..260).collect_vec();
genotype.shuffle(&mut rng);
let neighbors = sample_n_neighbors_priority_genotypes(10, &genotype, &mut rng);
assert!(neighbors.iter().all_unique());
assert_eq!(neighbors.iter().map(|neighbor| priority_genotype_kendall_tau_distance(&neighbor, &genotype)).any(|x| x != 1), false);
}
fn import_delay_genotype_phenotype_pairs(filename: &str) -> Vec<DelayGenotypePhenotypePair> {
let file = fs::File::open(filename)
.expect("Something went wrong opening the file");
let mut reader = BufReader::new(file);
serde_json::from_reader(&mut reader).unwrap()
}
fn import_priority_genotype_phenotype_pairs(filename: &str) -> Vec<PriorityGenotypePhenotypePair> {
let file = fs::File::open(filename)
.expect("Something went wrong opening the file");
let mut reader = BufReader::new(file);
serde_json::from_reader(&mut reader).unwrap()
}
#[test]
fn test_import_pair() {
let delay_file = "delay_locality.txt";
let pairs = import_delay_genotype_phenotype_pairs(delay_file);
assert_eq!(pairs.len(), 110);
}
#[test]
fn hed_performance_test() {
let pairs = import_delay_genotype_phenotype_pairs("delay_locality.txt");
let time_before = Utc::now();
approximate_hed_graph_edit_distance(&pairs[0].0.1, &pairs[1].0.1, DistanceScoring::Absolute);
let duration = Utc::now() - time_before;
dbg!(duration);
}
#[test]
fn locality_delay_distance_experiment() {
let delay_file = "delay_locality.txt";
let pairs = import_delay_genotype_phenotype_pairs(delay_file);
let mut distances_list = vec![];
for i in 0..10 {
let base_genotype = &pairs[i*11];
let mut distances = vec![];
if base_genotype.0.2 != BaseGenotype {
panic!("Code is wrong");
}
for j in 1..=10 {
let neighbor_genotype = &pairs[i*11+j];
if neighbor_genotype.0.2 != NeighborGenotype {
panic!("Code is wrong");
}
let genotype_distance = delay_genotype_euclidean_distance(&base_genotype.0.0, &neighbor_genotype.0.0);
let phenotype_distance = approximate_hed_graph_edit_distance(&base_genotype.0.1, &neighbor_genotype.0.1, DistanceScoring::Normalized);
distances.push((genotype_distance, phenotype_distance));
}
distances_list.push(distances);
}
dbg!(distances_list.clone());
let mut average_distances: Vec<f32> = vec![];
distances_list.iter().for_each(|x| average_distances.push(x.iter().map(|d| d.1).sum::<f32>() / 10.0));
dbg!(average_distances);
}
#[test]
fn locality_priority_distance_experiment() {
let delay_file = "priority_locality.txt";
let pairs = import_priority_genotype_phenotype_pairs(delay_file);
let mut distances_list = vec![];
for i in 0..10 {
let base_genotype = &pairs[i*11];
let mut distances = vec![];
if base_genotype.0.2 != BaseGenotype {
panic!("Code is wrong");
}
for j in 1..=10 {
let neighbor_genotype = &pairs[i*11+j];
if neighbor_genotype.0.2 != NeighborGenotype {
panic!("Code is wrong");
}
let genotype_distance = priority_genotype_kendall_tau_distance(&base_genotype.0.0, &neighbor_genotype.0.0);
let phenotype_distance = approximate_hed_graph_edit_distance(&base_genotype.0.1, &neighbor_genotype.0.1, DistanceScoring::Normalized);
distances.push((genotype_distance, phenotype_distance));
}
distances_list.push(distances);
}
dbg!(distances_list.clone());
let mut average_distances: Vec<f32> = vec![];
distances_list.iter().for_each(|x| average_distances.push(x.iter().map(|d| d.1).sum::<f32>() / 10.0));
dbg!(average_distances);
}
#[test]
fn calc_result() {
let priority_average_distances = [
0.7356258,
0.80348337,
0.80436885,
0.80398685,
0.78607714,
0.8235253,
0.79328054,
0.74935853,
0.84722316,
0.84871304,
];
let priority_average_distances_2 = [
0.79741,
0.7319101,
0.8317283,
0.7769042,
0.8216816,
0.82218504,
0.815512,
0.81250083,
0.82108,
0.81171054,
];
let priority_average_distances_3 = [
0.82152635,
0.82720023,
0.8396052,
0.8043841,
0.817204,
0.7763399,
0.78625625,
0.7787096,
0.7946863,
0.79405916,
];
let delay_average_distances = [
0.8176409,
0.82219493,
0.8119997,
0.79026824,
0.8077215,
0.8063756,
0.81142294,
0.80532753,
0.8126539,
0.81739885,
];
let delay_average_distances_2 = [
0.8068141,
0.82332516,
0.8018193,
0.7874603,
0.7145043,
0.76919544,
0.8036256,
0.7874316,
0.81357193,
0.8001444,
];
println!("Delay: {} ({}), Priority: {} ({})", mean(delay_average_distances_2.as_slice()).unwrap(), std_deviation(delay_average_distances_2.as_slice()).unwrap(), mean(priority_average_distances_3.as_slice()).unwrap(), std_deviation(priority_average_distances_3.as_slice()).unwrap());
}
}