-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDoublingTrick.html
443 lines (323 loc) · 40.6 KB
/
DoublingTrick.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-38514290-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Doubling Trick for Multi-Armed Bandits — SMPyBandits 0.9.6 documentation</title>
<script type="text/javascript" src="_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/language_data.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Structure and Sparsity of Stochastic Multi-Armed Bandits" href="SparseBandits.html" />
<link rel="prev" title="Multi-players simulation environment" href="MultiPlayers.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home"> SMPyBandits
<img src="_static/logo.png" class="logo" alt="Logo"/>
</a>
<div class="version">
0.9
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Contents:</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="README.html"><em>SMPyBandits</em></a></li>
<li class="toctree-l1"><a class="reference internal" href="docs/modules.html">SMPyBandits modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="How_to_run_the_code.html">How to run the code ?</a></li>
<li class="toctree-l1"><a class="reference internal" href="PublicationsWithSMPyBandits.html">List of research publications using Lilian Besson’s SMPyBandits project</a></li>
<li class="toctree-l1"><a class="reference internal" href="Aggregation.html"><strong>Policy aggregation algorithms</strong></a></li>
<li class="toctree-l1"><a class="reference internal" href="MultiPlayers.html"><strong>Multi-players simulation environment</strong></a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#"><strong>Doubling Trick for Multi-Armed Bandits</strong></a><ul>
<li class="toctree-l2"><a class="reference internal" href="#for-geometric-sequences">For geometric sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="#for-exponential-sequences">For exponential sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="#article">Article</a></li>
<li class="toctree-l2"><a class="reference internal" href="#configuration">Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="#how-to-run-the-experiments">How to run the experiments ?</a></li>
<li class="toctree-l2"><a class="reference internal" href="#some-illustrations">Some illustrations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#doubling-trick-with-restart-on-a-simple-bernoulli-problem">Doubling-Trick with restart, on a “simple” Bernoulli problem</a></li>
<li class="toctree-l3"><a class="reference internal" href="#doubling-trick-with-restart-on-randomly-taken-bernoulli-problems">Doubling-Trick with restart, on randomly taken Bernoulli problems</a></li>
<li class="toctree-l3"><a class="reference internal" href="#doubling-trick-with-restart-on-randomly-taken-gaussian-problems-with-variance-v-1">Doubling-Trick with restart, on randomly taken Gaussian problems with variance <code class="docutils literal notranslate"><span class="pre">$V=1$</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#doubling-trick-with-restart-on-an-easy-gaussian-problems-with-variance-v-1">Doubling-Trick with restart, on an easy Gaussian problems with variance <code class="docutils literal notranslate"><span class="pre">$V=1$</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#doubling-trick-with-no-restart-on-randomly-taken-bernoulli-problems">Doubling-Trick with no restart, on randomly taken Bernoulli problems</a></li>
<li class="toctree-l3"><a class="reference internal" href="#doubling-trick-with-no-restart-on-an-simple-bernoulli-problems">Doubling-Trick with no restart, on an “simple” Bernoulli problems</a></li>
<li class="toctree-l3"><a class="reference internal" href="#scroll-license-github-license">📜 License ? </a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="SparseBandits.html"><strong>Structure and Sparsity of Stochastic Multi-Armed Bandits</strong></a></li>
<li class="toctree-l1"><a class="reference internal" href="NonStationaryBandits.html"><strong>Non-Stationary Stochastic Multi-Armed Bandits</strong></a></li>
<li class="toctree-l1"><a class="reference internal" href="API.html">Short documentation of the API</a></li>
<li class="toctree-l1"><a class="reference internal" href="About_parallel_computations.html">About parallel computations</a></li>
<li class="toctree-l1"><a class="reference internal" href="TODO.html">💥 TODO</a></li>
<li class="toctree-l1"><a class="reference internal" href="plots/README.html">Some illustrations for this project</a></li>
<li class="toctree-l1"><a class="reference internal" href="notebooks/README.html">Jupyter Notebooks 📓 by Naereen @ GitHub</a></li>
<li class="toctree-l1"><a class="reference internal" href="notebooks/list.html">List of notebooks for SMPyBandits</a></li>
<li class="toctree-l1"><a class="reference internal" href="Profiling.html">A note on execution times, speed and profiling</a></li>
<li class="toctree-l1"><a class="reference internal" href="uml_diagrams/README.html">UML diagrams</a></li>
<li class="toctree-l1"><a class="reference internal" href="logs/README.html"><code class="docutils literal notranslate"><span class="pre">logs</span></code> files</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">SMPyBandits</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html">Docs</a> »</li>
<li><strong>Doubling Trick for Multi-Armed Bandits</strong></li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/DoublingTrick.md.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<style>
/* CSS overrides for sphinx_rtd_theme */
/* 24px margin */
.nbinput.nblast,
.nboutput.nblast {
margin-bottom: 19px; /* padding has already 5px */
}
/* ... except between code cells! */
.nblast + .nbinput {
margin-top: -19px;
}
.admonition > p:before {
margin-right: 4px; /* make room for the exclamation icon */
}
/* Fix math alignment, see https://github.com/rtfd/sphinx_rtd_theme/pull/686 */
.math {
text-align: unset;
}
</style>
<div class="section" id="doubling-trick-for-multi-armed-bandits">
<h1><strong>Doubling Trick for Multi-Armed Bandits</strong><a class="headerlink" href="#doubling-trick-for-multi-armed-bandits" title="Permalink to this headline">¶</a></h1>
<p>I studied what <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling Trick</a> can and can’t do for multi-armed bandits, to obtain efficient anytime version of non-anytime optimal Multi-Armed Bandits algorithms.</p>
<p>The <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling Trick</a> algorithm, denoted <code class="docutils literal notranslate"><span class="pre">$DT(A,</span> <span class="pre">(T_i))$</span></code> for a diverging increasing sequence <code class="docutils literal notranslate"><span class="pre">$T_i$</span></code>, is the following algorithm:</p>
<p><img alt="Policies/DoublingTrick.py" src="_images/DoublingTrick_algo1.png" /></p>
<p>Long story short, we proved the two following theorems.</p>
<div class="section" id="for-geometric-sequences">
<h2>For geometric sequences<a class="headerlink" href="#for-geometric-sequences" title="Permalink to this headline">¶</a></h2>
<blockquote>
<div><p>It works for minimax regret bounds (in <code class="docutils literal notranslate"><span class="pre">$R_T</span> <span class="pre">=</span> <span class="pre">\mathcal{O}(\sqrt{T}))$</span></code>, with a constant multiplicative loss <code class="docutils literal notranslate"><span class="pre">$\leq</span> <span class="pre">4$</span></code>, but not for logarithmic regret bounds (in <code class="docutils literal notranslate"><span class="pre">$R_T</span> <span class="pre">=</span> <span class="pre">\mathcal{O}(\log</span> <span class="pre">T))$</span></code>.</p>
</div></blockquote>
<p><img alt="https://hal.inria.fr/hal-01736357" src="_images/DoublingTrick_theorem1.png" /></p>
</div>
<div class="section" id="for-exponential-sequences">
<h2>For exponential sequences<a class="headerlink" href="#for-exponential-sequences" title="Permalink to this headline">¶</a></h2>
<blockquote>
<div><p>It works for logarithmic regret bounds (in <code class="docutils literal notranslate"><span class="pre">$R_T</span> <span class="pre">=</span> <span class="pre">\mathcal{O}(\log</span> <span class="pre">T))$</span></code>, but not for minimax regret bounds (in <code class="docutils literal notranslate"><span class="pre">$R_T</span> <span class="pre">=</span> <span class="pre">\mathcal{O}(\sqrt{T}))$</span></code>.</p>
</div></blockquote>
<p><img alt="https://hal.inria.fr/hal-01736357" src="_images/DoublingTrick_theorem2.png" /></p>
</div>
<hr class="docutils" />
<div class="section" id="article">
<h2>Article<a class="headerlink" href="#article" title="Permalink to this headline">¶</a></h2>
<p>I wrote a research article on that topic, it is a better introduction as a self-contained document to explain this idea and the algorithms. Reference: <a class="reference external" href="https://hal.inria.fr/hal-01736357">[What the Doubling Trick Can or Can’t Do for Multi-Armed Bandits, Lilian Besson and Emilie Kaufmann, 2018]</a>.</p>
<blockquote>
<div><p>PDF : <a class="reference external" href="https://hal.inria.fr/hal-01736357/document">BK__ALT_2018.pdf</a> | HAL notice : <a class="reference external" href="https://hal.inria.fr/hal-01736357/">BK__ALT_2018</a> | BibTeX : <a class="reference external" href="https://hal.inria.fr/hal-01736357/bibtex">BK__ALT_2018.bib</a> | <a class="reference external" href="MultiPlayers.html">Source code and documentation</a>
<a class="reference external" href="https://hal.inria.fr/hal-01736357"><img alt="Published" src="https://img.shields.io/badge/Published%3F-waiting-orange.svg" /></a> <a class="reference external" href="https://bitbucket.org/lbesson/what-doubling-tricks-can-and-cant-do-for-multi-armed-bandits/commits/"><img alt="Maintenance" src="https://img.shields.io/badge/Maintained%3F-almost%20finished-orange.svg" /></a> <a class="reference external" href="https://bitbucket.org/lbesson/ama"><img alt="Ask Me Anything !" src="https://img.shields.io/badge/Ask%20me-anything-1abc9c.svg" /></a></p>
</div></blockquote>
</div>
<hr class="docutils" />
<div class="section" id="configuration">
<h2>Configuration<a class="headerlink" href="#configuration" title="Permalink to this headline">¶</a></h2>
<p>A simple python file, <a class="reference external" href="https://smpybandits.github.io/docs/configuration_comparing_doubling_algorithms.html"><code class="docutils literal notranslate"><span class="pre">configuration_comparing_doubling_algorithms.py</span></code></a>, is used to import the <a class="reference external" href="Arms/">arm classes</a>, the <a class="reference external" href="Policies/">policy classes</a> and define the problems and the experiments.</p>
<p>For example, we can compare the standard anytime <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCB.html"><code class="docutils literal notranslate"><span class="pre">klUCB</span></code></a> algorithm against the non-anytime <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html"><code class="docutils literal notranslate"><span class="pre">klUCBPlusPlus</span></code></a> algorithm, as well as 3 versions of <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html"><code class="docutils literal notranslate"><span class="pre">DoublingTrickWrapper</span></code></a> applied to <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html"><code class="docutils literal notranslate"><span class="pre">klUCBPlusPlus</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">configuration</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">"horizon"</span><span class="p">:</span> <span class="mi">10000</span><span class="p">,</span> <span class="c1"># Finite horizon of the simulation</span>
<span class="s2">"repetitions"</span><span class="p">:</span> <span class="mi">100</span><span class="p">,</span> <span class="c1"># number of repetitions</span>
<span class="s2">"n_jobs"</span><span class="p">:</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="c1"># Maximum number of cores for parallelization: use ALL your CPU</span>
<span class="s2">"verbosity"</span><span class="p">:</span> <span class="mi">5</span><span class="p">,</span> <span class="c1"># Verbosity for the joblib calls</span>
<span class="c1"># Environment configuration, you can set up more than one.</span>
<span class="s2">"environment"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"arm_type"</span><span class="p">:</span> <span class="n">Bernoulli</span><span class="p">,</span>
<span class="s2">"params"</span><span class="p">:</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.9</span>
<span class="p">}</span>
<span class="p">],</span>
<span class="c1"># Policies that should be simulated, and their parameters.</span>
<span class="s2">"policies"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span><span class="s2">"archtype"</span><span class="p">:</span> <span class="n">UCB</span><span class="p">,</span> <span class="s2">"params"</span><span class="p">:</span> <span class="p">{}</span> <span class="p">},</span>
<span class="p">{</span><span class="s2">"archtype"</span><span class="p">:</span> <span class="n">klUCB</span><span class="p">,</span> <span class="s2">"params"</span><span class="p">:</span> <span class="p">{}</span> <span class="p">},</span>
<span class="p">{</span><span class="s2">"archtype"</span><span class="p">:</span> <span class="n">klUCBPlusPlus</span><span class="p">,</span> <span class="s2">"params"</span><span class="p">:</span> <span class="p">{</span> <span class="s2">"horizon"</span><span class="p">:</span> <span class="mi">10000</span> <span class="p">}</span> <span class="p">},</span>
<span class="p">]</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Then add a <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> bandit algorithm (<a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html"><code class="docutils literal notranslate"><span class="pre">DoublingTrickWrapper</span></code> class</a>), you can use this piece of code:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">configuration</span><span class="p">[</span><span class="s2">"policies"</span><span class="p">]</span> <span class="o">+=</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"archtype"</span><span class="p">:</span> <span class="n">DoublingTrickWrapper</span><span class="p">,</span>
<span class="s2">"params"</span><span class="p">:</span> <span class="p">{</span>
<span class="s2">"next_horizon"</span><span class="p">:</span> <span class="n">next_horizon</span><span class="p">,</span>
<span class="s2">"full_restart"</span><span class="p">:</span> <span class="n">full_restart</span><span class="p">,</span>
<span class="s2">"policy"</span><span class="p">:</span> <span class="n">BayesUCB</span><span class="p">,</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="k">for</span> <span class="n">full_restart</span> <span class="ow">in</span> <span class="p">[</span> <span class="bp">True</span><span class="p">,</span> <span class="bp">False</span> <span class="p">]</span>
<span class="k">for</span> <span class="n">next_horizon</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">next_horizon__arithmetic</span><span class="p">,</span>
<span class="n">next_horizon__geometric</span><span class="p">,</span>
<span class="n">next_horizon__exponential_fast</span><span class="p">,</span>
<span class="n">next_horizon__exponential_slow</span><span class="p">,</span>
<span class="n">next_horizon__exponential_generic</span>
<span class="p">]</span>
<span class="p">]</span>
</pre></div>
</div>
</div>
<hr class="docutils" />
<div class="section" id="how-to-run-the-experiments">
<h2><a class="reference internal" href="How_to_run_the_code.html"><span class="doc">How to run the experiments ?</span></a><a class="headerlink" href="#how-to-run-the-experiments" title="Permalink to this headline">¶</a></h2>
<p>You should use the provided <a class="reference external" href="Makefile"><code class="docutils literal notranslate"><span class="pre">Makefile</span></code></a> file to do this simply:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># if not already installed, otherwise update with 'git pull'</span>
git clone https://github.com/SMPyBandits/SMPyBandits/
<span class="nb">cd</span> SMPyBandits
make install <span class="c1"># install the requirements ONLY ONCE</span>
make comparing_doubling_algorithms <span class="c1"># run and log the main.py script</span>
</pre></div>
</div>
</div>
<hr class="docutils" />
<div class="section" id="some-illustrations">
<h2>Some illustrations<a class="headerlink" href="#some-illustrations" title="Permalink to this headline">¶</a></h2>
<p>Here are some plots illustrating the performances of the different <a class="reference external" href="https://smpybandits.github.io/docs/Policies/">policies</a> implemented in this project, against various problems (with <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Bernoulli.html"><code class="docutils literal notranslate"><span class="pre">Bernoulli</span></code></a> and <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Gaussian.html"><code class="docutils literal notranslate"><span class="pre">UnboundedGaussian</span></code></a> arms only):</p>
<div class="section" id="doubling-trick-with-restart-on-a-simple-bernoulli-problem">
<h3><a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> with restart, on a “simple” Bernoulli problem<a class="headerlink" href="#doubling-trick-with-restart-on-a-simple-bernoulli-problem" title="Permalink to this headline">¶</a></h3>
<p><img alt="Doubling-Trick with restart, on a "simple" Bernoulli problem" src="_images/main____env1-1_1217677871459230631.png" /></p>
<p>Regret for <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a>, for <code class="docutils literal notranslate"><span class="pre">$K=9$</span></code> <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Bernoulli.html">Bernoulli arms</a>, horizon <code class="docutils literal notranslate"><span class="pre">$T=45678$</span></code>, <code class="docutils literal notranslate"><span class="pre">$n=1000$</span></code> repetitions and <code class="docutils literal notranslate"><span class="pre">$\mu_1,\ldots,\mu_K$</span></code> taken uniformly in <code class="docutils literal notranslate"><span class="pre">$[0,1]^K$</span></code>.
Geometric doubling (<code class="docutils literal notranslate"><span class="pre">$b=2$</span></code>) and slow exponential doubling (<code class="docutils literal notranslate"><span class="pre">$b=1.1$</span></code>) are too slow, and short first sequences make the regret blow up in the beginning of the experiment.
At <code class="docutils literal notranslate"><span class="pre">$t=40000$</span></code> we see clearly the effect of a new sequence for the best <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">doubling trick</a> (<code class="docutils literal notranslate"><span class="pre">$T_i</span> <span class="pre">=</span> <span class="pre">200</span> <span class="pre">\times</span> <span class="pre">2^i$</span></code>).
As expected, <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> outperforms <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCB.html">kl-UCB</a>, and if the doubling sequence is growing fast enough then <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a>(<a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a>) can perform as well as <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> (see for <code class="docutils literal notranslate"><span class="pre">$t</span> <span class="pre"><</span> <span class="pre">40000$</span></code>).</p>
</div>
<div class="section" id="doubling-trick-with-restart-on-randomly-taken-bernoulli-problems">
<h3><a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> with restart, on randomly taken Bernoulli problems<a class="headerlink" href="#doubling-trick-with-restart-on-randomly-taken-bernoulli-problems" title="Permalink to this headline">¶</a></h3>
<p><img alt="Doubling-Trick with restart, on randomly taken Bernoulli problems" src="_images/main____env1-1_3633169128724378553.png" /></p>
<p>Similarly but for <code class="docutils literal notranslate"><span class="pre">$\mu_1,\ldots,\mu_K$</span></code> evenly spaced in <code class="docutils literal notranslate"><span class="pre">$[0,1]^K$</span></code> (<code class="docutils literal notranslate"><span class="pre">${0.1,\ldots,0.9}$</span></code>).
Both <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCB.html">kl-UCB</a> and <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> are very efficient on “easy” problems like this one, and we can check visually that they match the lower bound from Lai & Robbins (1985).
As before we check that slow doubling are too slow to give reasonable performance.</p>
</div>
<div class="section" id="doubling-trick-with-restart-on-randomly-taken-gaussian-problems-with-variance-v-1">
<h3><a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> with restart, on randomly taken Gaussian problems with variance <code class="docutils literal notranslate"><span class="pre">$V=1$</span></code><a class="headerlink" href="#doubling-trick-with-restart-on-randomly-taken-gaussian-problems-with-variance-v-1" title="Permalink to this headline">¶</a></h3>
<p><img alt="Doubling-Trick with restart, on randomly taken Gaussian problems with variance V=1" src="_images/main____env1-1_2223860464453456415.png" /></p>
<p>Regret for <code class="docutils literal notranslate"><span class="pre">$K=9$</span></code> <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Gaussian.html">Gaussian arms</a> <code class="docutils literal notranslate"><span class="pre">$\mathcal{N}(\mu,</span> <span class="pre">1)$</span></code>, horizon <code class="docutils literal notranslate"><span class="pre">$T=45678$</span></code>, <code class="docutils literal notranslate"><span class="pre">$n=1000$</span></code> repetitions and <code class="docutils literal notranslate"><span class="pre">$\mu_1,\ldots,\mu_K$</span></code> taken uniformly in <code class="docutils literal notranslate"><span class="pre">$[-5,5]^K$</span></code> and variance <code class="docutils literal notranslate"><span class="pre">$V=1$</span></code>.
On “hard” problems like this one, both <a class="reference external" href="https://smpybandits.github.io/docs/Policies.UCB.html">UCB</a> and <a class="reference external" href="https://smpybandits.github.io/docs/Policies.ApproximatedFHGittins.html">AFHG</a> perform similarly and poorly w.r.t. to the lower bound from Lai & Robbins (1985).
As before we check that geometric doubling (<code class="docutils literal notranslate"><span class="pre">$b=2$</span></code>) and slow exponential doubling (<code class="docutils literal notranslate"><span class="pre">$b=1.1$</span></code>) are too slow, but a fast enough doubling sequence does give reasonable performance for the anytime <a class="reference external" href="https://smpybandits.github.io/docs/Policies.ApproximatedFHGittins.html">AFHG</a> obtained by <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a>.</p>
</div>
<div class="section" id="doubling-trick-with-restart-on-an-easy-gaussian-problems-with-variance-v-1">
<h3><a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> with restart, on an easy Gaussian problems with variance <code class="docutils literal notranslate"><span class="pre">$V=1$</span></code><a class="headerlink" href="#doubling-trick-with-restart-on-an-easy-gaussian-problems-with-variance-v-1" title="Permalink to this headline">¶</a></h3>
<p><img alt="Doubling-Trick with restart, on an easy Gaussian problems with variance V=1" src="_images/main____env1-1_6979515539977716717.png" /></p>
<p>Regret for <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a>, for <code class="docutils literal notranslate"><span class="pre">$K=9$</span></code> <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Gaussian.html">Gaussian arms</a> <code class="docutils literal notranslate"><span class="pre">$\mathcal{N}(\mu,</span> <span class="pre">1)$</span></code>, horizon <code class="docutils literal notranslate"><span class="pre">$T=45678$</span></code>, <code class="docutils literal notranslate"><span class="pre">$n=1000$</span></code> repetitions and <code class="docutils literal notranslate"><span class="pre">$\mu_1,\ldots,\mu_K$</span></code> uniformly spaced in <code class="docutils literal notranslate"><span class="pre">$[-5,5]^K$</span></code>.
On “easy” problems like this one, both <a class="reference external" href="https://smpybandits.github.io/docs/Policies.UCB.html">UCB</a> and <a class="reference external" href="https://smpybandits.github.io/docs/Policies.ApproximatedFHGittins.html">AFHG</a> perform similarly and attain near constant regret (identifying the best <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Gaussian.html">Gaussian arm</a> is very easy here as they are sufficiently distinct).
Each <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">doubling trick</a> also appear to attain near constant regret, but geometric doubling (<code class="docutils literal notranslate"><span class="pre">$b=2$</span></code>) and slow exponential doubling (<code class="docutils literal notranslate"><span class="pre">$b=1.1$</span></code>) are slower to converge and thus less efficient.</p>
</div>
<div class="section" id="doubling-trick-with-no-restart-on-randomly-taken-bernoulli-problems">
<h3><a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> with no restart, on randomly taken Bernoulli problems<a class="headerlink" href="#doubling-trick-with-no-restart-on-randomly-taken-bernoulli-problems" title="Permalink to this headline">¶</a></h3>
<p><img alt="Doubling-Trick with no restart, on randomly taken Bernoulli problems" src="_images/main____env1-1_5964629015089571121.png" /></p>
<p>Regret for <code class="docutils literal notranslate"><span class="pre">$K=9$</span></code> <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Bernoulli.html">Bernoulli arms</a>, horizon <code class="docutils literal notranslate"><span class="pre">$T=45678$</span></code>, <code class="docutils literal notranslate"><span class="pre">$n=1000$</span></code> repetitions and <code class="docutils literal notranslate"><span class="pre">$\mu_1,\ldots,\mu_K$</span></code> taken uniformly in <code class="docutils literal notranslate"><span class="pre">$[0,1]^K$</span></code>, for <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> no-restart.
Geometric doubling (\eg, <code class="docutils literal notranslate"><span class="pre">$b=2$</span></code>) and slow exponential doubling (\eg, <code class="docutils literal notranslate"><span class="pre">$b=1.1$</span></code>) are too slow, and short first sequences make the regret blow up in the beginning of the experiment.
At <code class="docutils literal notranslate"><span class="pre">$t=40000$</span></code> we see clearly the effect of a new sequence for the best <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">doubling trick</a> (<code class="docutils literal notranslate"><span class="pre">$T_i</span> <span class="pre">=</span> <span class="pre">200</span> <span class="pre">\times</span> <span class="pre">2^i$</span></code>).
As expected, <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> outperforms <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCB.html">kl-UCB</a>, and if the doubling sequence is growing fast enough then <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> no-restart for <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> can perform as well as <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a>.</p>
</div>
<div class="section" id="doubling-trick-with-no-restart-on-an-simple-bernoulli-problems">
<h3><a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> with no restart, on an “simple” Bernoulli problems<a class="headerlink" href="#doubling-trick-with-no-restart-on-an-simple-bernoulli-problems" title="Permalink to this headline">¶</a></h3>
<p><img alt="Doubling-Trick with no restart, on an "simple" Bernoulli problems" src="_images/main____env1-1_5972568793654673752.png" /></p>
<p><code class="docutils literal notranslate"><span class="pre">$K=9$</span></code> <a class="reference external" href="https://smpybandits.github.io/docs/Arms.Bernoulli.html">Bernoulli arms</a> with <code class="docutils literal notranslate"><span class="pre">$\mu_1,\ldots,\mu_K$</span></code> evenly spaced in <code class="docutils literal notranslate"><span class="pre">$[0,1]^K$</span></code>.
On easy problems like this one, both <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCB.html">kl-UCB</a> and <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> are very efficient, and here the geometric allows the <a class="reference external" href="https://smpybandits.github.io/docs/Policies.DoublingTrickWrapper.html">Doubling-Trick</a> no-restart anytime version of <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a> to outperform both <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCB.html">kl-UCB</a> and <a class="reference external" href="https://smpybandits.github.io/docs/Policies.klUCBPlusPlus.html">kl-UCB++</a>.</p>
<blockquote>
<div><p>These illustrations come from my article, <a class="reference external" href="https://hal.inria.fr/hal-01736357">[What the Doubling Trick Can or Can’t Do for Multi-Armed Bandits, Lilian Besson and Emilie Kaufmann, 2018]</a>.</p>
</div></blockquote>
</div>
<hr class="docutils" />
<div class="section" id="scroll-license-github-license">
<h3>📜 License ? <a class="reference external" href="https://github.com/SMPyBandits/SMPyBandits/blob/master/LICENSE"><img alt="GitHub license" src="https://img.shields.io/github/license/SMPyBandits/SMPyBandits.svg" /></a><a class="headerlink" href="#scroll-license-github-license" title="Permalink to this headline">¶</a></h3>
<p><a class="reference external" href="https://lbesson.mit-license.org/">MIT Licensed</a> (file <a class="reference external" href="LICENSE">LICENSE</a>).</p>
<p>© 2016-2018 <a class="reference external" href="https://GitHub.com/Naereen">Lilian Besson</a>.</p>
<p><a class="reference external" href="https://github.com/SMPyBandits/SMPyBandits/"><img alt="Open Source? Yes!" src="https://badgen.net/badge/Open%20Source%20%3F/Yes%21/blue?icon=github" /></a>
<a class="reference external" href="https://GitHub.com/SMPyBandits/SMPyBandits/graphs/commit-activity"><img alt="Maintenance" src="https://img.shields.io/badge/Maintained%3F-yes-green.svg" /></a>
<a class="reference external" href="https://GitHub.com/Naereen/ama"><img alt="Ask Me Anything !" src="https://img.shields.io/badge/Ask%20me-anything-1abc9c.svg" /></a>
<a class="reference external" href="https://GitHub.com/SMPyBandits/SMPyBandits/"><img alt="Analytics" src="https://ga-beacon.appspot.com/UA-38514290-17/github.com/SMPyBandits/SMPyBandits/README.md?pixel" /></a>
<img alt="https://pypi.org/project/SMPyBandits" src="https://pypi.org/project/SMPyBandits" /><img alt="PyPI version" src="https://img.shields.io/pypi/v/smpybandits.svg" />
<img alt="https://pypi.org/project/SMPyBandits" src="https://pypi.org/project/SMPyBandits" /><img alt="PyPI implementation" src="https://img.shields.io/pypi/implementation/smpybandits.svg" />
<a class="reference external" href="https://pypi.org/project/SMPyBandits"><img alt="https://pypi.org/project/SMPyBandits" src="https://pypi.org/project/SMPyBandits" /><img alt="PyPI pyversions" src="https://img.shields.io/pypi/pyversions/smpybandits.svg?logo=python" />
</a>
<a class="reference external" href="https://pypi.org/project/SMPyBandits"><img alt="https://pypi.org/project/SMPyBandits" src="https://pypi.org/project/SMPyBandits" /><img alt="PyPI download" src="https://img.shields.io/pypi/dm/smpybandits.svg" /></a>
<a class="reference external" href="https://pypi.org/project/SMPyBandits"><img alt="https://pypi.org/project/SMPyBandits" src="https://pypi.org/project/SMPyBandits" /><img alt="PyPI status" src="https://img.shields.io/pypi/status/smpybandits.svg" /></a>
<a class="reference external" href="https://SMPyBandits.ReadTheDocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/smpybandits/badge/?version=latest" /></a>
<a class="reference external" href="https://travis-ci.org/SMPyBandits/SMPyBandits"><img alt="Build Status" src="https://travis-ci.org/SMPyBandits/SMPyBandits.svg?branch=master" /></a>
<a class="reference external" href="https://GitHub.com/SMPyBandits/SMPyBandits/stargazers"><img alt="Stars of https://github.com/SMPyBandits/SMPyBandits/" src="https://badgen.net/github/stars/SMPyBandits/SMPyBandits" /></a>
<a class="reference external" href="https://github.com/SMPyBandits/SMPyBandits/releases"><img alt="Releases of https://github.com/SMPyBandits/SMPyBandits/" src="https://badgen.net/github/release/SMPyBandits/SMPyBandits" /></a></p>
</div>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="SparseBandits.html" class="btn btn-neutral float-right" title="Structure and Sparsity of Stochastic Multi-Armed Bandits" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="MultiPlayers.html" class="btn btn-neutral float-left" title="Multi-players simulation environment" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2016-2018, Lilian Besson (Naereen)
<span class="lastupdated">
Last updated on 25 Feb 2020, 14h.
</span>
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>