-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusic.py
101 lines (76 loc) · 2.78 KB
/
music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import av
import cv2
import numpy as np
import mediapipe as mp
from keras.models import load_model
import webbrowser
model = load_model("model.h5")
label = np.load("labels.npy")
holistic = mp.solutions.holistic
hands = mp.solutions.hands
holis = holistic.Holistic()
drawing = mp.solutions.drawing_utils
st.header("Emotion Based Music Recommender")
if "run" not in st.session_state:
st.session_state["run"] = "true"
try:
emotion = np.load("emotion.npy")[0]
except:
emotion=""
if not(emotion):
st.session_state["run"] = "true"
else:
st.session_state["run"] = "false"
class EmotionProcessor:
def recv(self, frame):
frm = frame.to_ndarray(format="bgr24")
##############################
frm = cv2.flip(frm, 1)
res = holis.process(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
lst = []
if res.face_landmarks:
for i in res.face_landmarks.landmark:
lst.append(i.x - res.face_landmarks.landmark[1].x)
lst.append(i.y - res.face_landmarks.landmark[1].y)
if res.left_hand_landmarks:
for i in res.left_hand_landmarks.landmark:
lst.append(i.x - res.left_hand_landmarks.landmark[8].x)
lst.append(i.y - res.left_hand_landmarks.landmark[8].y)
else:
for i in range(42):
lst.append(0.0)
if res.right_hand_landmarks:
for i in res.right_hand_landmarks.landmark:
lst.append(i.x - res.right_hand_landmarks.landmark[8].x)
lst.append(i.y - res.right_hand_landmarks.landmark[8].y)
else:
for i in range(42):
lst.append(0.0)
lst = np.array(lst).reshape(1,-1)
pred = label[np.argmax(model.predict(lst))]
print(pred)
cv2.putText(frm, pred, (50,50),cv2.FONT_ITALIC, 1, (255,0,0),2)
np.save("emotion.npy", np.array([pred]))
drawing.draw_landmarks(frm, res.face_landmarks, holistic.FACEMESH_TESSELATION,
landmark_drawing_spec=drawing.DrawingSpec(color=(0,0,255), thickness=-1, circle_radius=1),
connection_drawing_spec=drawing.DrawingSpec(thickness=1))
drawing.draw_landmarks(frm, res.left_hand_landmarks, hands.HAND_CONNECTIONS)
drawing.draw_landmarks(frm, res.right_hand_landmarks, hands.HAND_CONNECTIONS)
##############################
return av.VideoFrame.from_ndarray(frm, format="bgr24")
lang = st.text_input("Language")
singer = st.text_input("singer")
if lang and singer and st.session_state["run"] != "false":
webrtc_streamer(key="key", desired_playing_state=True,
video_processor_factory=EmotionProcessor)
btn = st.button("Recommend me songs")
if btn:
if not(emotion):
st.warning("Please let me capture your emotion first")
st.session_state["run"] = "true"
else:
webbrowser.open(f"https://www.youtube.com/results?search_query={lang}+{emotion}+song+{singer}")
np.save("emotion.npy", np.array([""]))
st.session_state["run"] = "false"