diff --git a/docs/requirements.txt b/docs/requirements.txt index 0a047708..35c1fe04 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -7,7 +7,7 @@ pandas>=1.5.3 scipy==1.10.1 seaborn==0.12.2 h5py>=3.7.0 -gefpy>=1.1.6 +gefpy>=1.1.9 # setuptools>=41.0.0,<60.0.0 setuptools==68.2.2 #todo python3.8/site-packages/umap/distances.py:1053: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. @@ -60,14 +60,14 @@ opencv-python>=4.8.0.76 # protobuf<3.21.0a0,>=3.20.1 # protobuf>=3.20.1 hotspotsc==1.1.1 -# git+https://github.com/YosefLab/Hotspot.git +# git+https://github.com/YosefLab/Hotspot.git@v1.1.2 distributed>=2023.3.2.1 # keras==2.7.0 pyarrow>=10.0.1 tables>=3.6.1 spatialpandas>=0.4.4 # selenium>=4.4.3 -loompy==3.0.7 +loompy==3.0.6 gtfparse==1.2.1 harmonypy==0.0.6 SQLAlchemy==1.3.24 @@ -77,7 +77,7 @@ pyscenic>=0.12.1 onnxruntime==1.15.1 POT==0.9.1 distinctipy>=1.2.2 -joypy>=0.2.6 +# joypy>=0.2.4 lxml>=4.8.0 fastcluster>=1.2.6 pycirclize>=0.5.0 diff --git a/docs/source/Tutorials(Multi-sample)/3D_Cell_Cell_Communication.ipynb b/docs/source/Tutorials(Multi-sample)/3D_Cell_Cell_Communication.ipynb index 94ce98c6..e6685487 100644 --- a/docs/source/Tutorials(Multi-sample)/3D_Cell_Cell_Communication.ipynb +++ b/docs/source/Tutorials(Multi-sample)/3D_Cell_Cell_Communication.ipynb @@ -39,7 +39,7 @@ } }, "source": [ - "The demo data used here is 59 samples of 2D mouse embryo heart stereo-seq data. Download [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) and load them as a MSData." + "The demo data used here is 59 samples of 2D mouse embryo heart stereo-seq data. Download [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) and load them as a MSData." ] }, { @@ -3438,7 +3438,7 @@ "\n", "The parameter `regulons` specifies the path of file saving regulons which is output of function of [3D Gene Regulatory Network](https://stereopy.readthedocs.io/en/latest/Tutorials/3D_Gene_Regulatory_Network.html).\n", "\n", - "You need to specify the path of file which contains the weighted network infomation by parameter `weighted_network_path` . By default, you can download the NicheNet-V2 weighted network files from [here](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + "You need to specify the path of file which contains the weighted network infomation by parameter `weighted_network_path` . By default, you can download the NicheNet-V2 weighted network files from [here](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", "There are two files about weighted network infomations:\n", "\n", diff --git a/docs/source/Tutorials(Multi-sample)/3D_Gene_Regulatory_Network.ipynb b/docs/source/Tutorials(Multi-sample)/3D_Gene_Regulatory_Network.ipynb index 3367c087..4303a7f7 100644 --- a/docs/source/Tutorials(Multi-sample)/3D_Gene_Regulatory_Network.ipynb +++ b/docs/source/Tutorials(Multi-sample)/3D_Gene_Regulatory_Network.ipynb @@ -40,7 +40,7 @@ "id": "96736dad", "metadata": {}, "source": [ - "We use *Drosophila melanogaster* data to simulate a 3D model. Download the [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) first." + "We use *Drosophila melanogaster* data to simulate a 3D model. Download the [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) first." ] }, { @@ -531,7 +531,7 @@ "Before performing the function, make sure the preparation of following input files: \n", "\n", "1. Spatially resolved transcriptomics data: the matrix of gene expression for each single cell. Each column represents a gene, and each row represents a SRT sample. Values in the matrix are typically gene expression levels, either raw counts or normalized expression (raw counts prefered). SRT expression matrix of bin200 in the mouse brain generated by Stereo-seq is used here, through \n", - " **[example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f)**.\n", + " **[example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc)**.\n", "\n", "2. Transcription factor gene list: a list of transcription factors of interest. This list is requried for the network inference step. Data can be downloaded through\n", " **[pySCENIC_TF_list](https://github.com/aertslab/pySCENIC/tree/master/resources)** and\n", diff --git a/docs/source/Tutorials(Multi-sample)/Batch_Effect.ipynb b/docs/source/Tutorials(Multi-sample)/Batch_Effect.ipynb index 31b3db87..c62aaa29 100644 --- a/docs/source/Tutorials(Multi-sample)/Batch_Effect.ipynb +++ b/docs/source/Tutorials(Multi-sample)/Batch_Effect.ipynb @@ -44,7 +44,7 @@ "source": [ "Two batches of experiment data stored in GEM files are uesd here, which are lasso results from their original GEF file.\n", "\n", - "Please download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f)." + "Please download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc)." ] }, { @@ -67,426 +67,16 @@ "outputs": [ { "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " var force = true;\n", - "\n", - " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", - " root._bokeh_onload_callbacks = [];\n", - " root._bokeh_is_loading = undefined;\n", - " }\n", - "\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, js_modules, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - " if (js_modules == null) js_modules = [];\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls.length === 0 && js_modules.length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - "\n", - " function on_error() {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " for (var i = 0; i < css_urls.length; i++) {\n", - " var url = css_urls[i];\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " var skip = [];\n", - " if (window.requirejs) {\n", - " window.requirejs.config({'packages': {}, 'paths': {'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack-h5', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'gridstack': {'exports': 'GridStack'}}});\n", - " require([\"gridstack\"], function(GridStack) {\n", - "\twindow.GridStack = GridStack\n", - "\ton_load()\n", - " })\n", - " require([\"notyf\"], function() {\n", - "\ton_load()\n", - " })\n", - " root._bokeh_is_loading = css_urls.length + 2;\n", - " } else {\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length;\n", - " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", - " var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/gridstack/gridstack@4.2.5/dist/gridstack-h5.js'];\n", - " for (var i = 0; i < urls.length; i++) {\n", - " skip.push(urls[i])\n", - " }\n", - " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", - " var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", - " for (var i = 0; i < urls.length; i++) {\n", - " skip.push(urls[i])\n", - " }\n", - " } for (var i = 0; i < js_urls.length; i++) {\n", - " var url = js_urls[i];\n", - " if (skip.indexOf(url) >= 0) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (var i = 0; i < js_modules.length; i++) {\n", - " var url = js_modules[i];\n", - " if (skip.indexOf(url) >= 0) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " if (!js_urls.length && !js_modules.length) {\n", - " on_load()\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\", \"https://unpkg.com/@holoviz/panel@0.14.4/dist/panel.min.js\"];\n", - " var js_modules = [];\n", - " var css_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/css/card.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/loading.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/debugger.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/dataframe.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/widgets.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/json.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/markdown.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/alerts.css\"];\n", - " var inline_js = [ function(Bokeh) {\n", - " inject_raw_css(\"\\n .bk.pn-loading.arc:before {\\n background-image: url(\\\"\\\");\\n background-size: auto calc(min(50%, 400px));\\n }\\n \");\n", - " }, function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {} // ensure no trailing comma for IE\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if ((root.Bokeh !== undefined) || (force === true)) {\n", - " for (var i = 0; i < inline_js.length; i++) {\n", - " inline_js[i].call(root, root.Bokeh);\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " }\n", - " }\n", - "\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", - " run_inline_js();\n", - " } else {\n", - " load_libs(css_urls, js_urls, js_modules, function() {\n", - " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - " run_inline_js();\n", - " });\n", - " }\n", - "}(window));" - ], - "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack-h5', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'gridstack': {'exports': 'GridStack'}}});\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 2;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length;\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/gridstack/gridstack@4.2.5/dist/gridstack-h5.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\", \"https://unpkg.com/@holoviz/panel@0.14.4/dist/panel.min.js\"];\n var js_modules = [];\n var css_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/css/card.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/loading.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/debugger.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/dataframe.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/widgets.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/json.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/markdown.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/alerts.css\"];\n var inline_js = [ function(Bokeh) {\n inject_raw_css(\"\\n .bk.pn-loading.arc:before {\\n background-image: url(\\\"\\\");\\n background-size: auto calc(min(50%, 400px));\\n }\\n \");\n }, function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, js_modules, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack-h5', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'gridstack': {'exports': 'GridStack'}}});\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 2;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length;\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/gridstack/gridstack@4.2.5/dist/gridstack-h5.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\", \"https://unpkg.com/@holoviz/panel@0.14.4/dist/panel.min.js\"];\n var js_modules = [];\n var css_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/css/card.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/loading.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/debugger.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/dataframe.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/widgets.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/json.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/markdown.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/alerts.css\"];\n var inline_js = [ function(Bokeh) {\n inject_raw_css(\"\\n .bk.pn-loading.arc:before {\\n background-image: url(\\\"\\\");\\n background-size: auto calc(min(50%, 400px));\\n }\\n \");\n }, function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, js_modules, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", + "application/vnd.holoviews_load.v0+json": "" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "application/javascript": [ - "\n", - "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", - " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", - "}\n", - "\n", - "\n", - " function JupyterCommManager() {\n", - " }\n", - "\n", - " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", - " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " comm_manager.register_target(comm_id, function(comm) {\n", - " comm.on_msg(msg_handler);\n", - " });\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", - " comm.onMsg = msg_handler;\n", - " });\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " console.log(message)\n", - " var content = {data: message.data, comm_id};\n", - " var buffers = []\n", - " for (var buffer of message.buffers || []) {\n", - " buffers.push(new DataView(buffer))\n", - " }\n", - " var metadata = message.metadata || {};\n", - " var msg = {content, buffers, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " })\n", - " }\n", - " }\n", - "\n", - " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", - " if (comm_id in window.PyViz.comms) {\n", - " return window.PyViz.comms[comm_id];\n", - " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", - " if (msg_handler) {\n", - " comm.on_msg(msg_handler);\n", - " }\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", - " comm.open();\n", - " if (msg_handler) {\n", - " comm.onMsg = msg_handler;\n", - " }\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", - " comm_promise.then((comm) => {\n", - " window.PyViz.comms[comm_id] = comm;\n", - " if (msg_handler) {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " var content = {data: message.data};\n", - " var metadata = message.metadata || {comm_id};\n", - " var msg = {content, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " }) \n", - " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", - " return comm_promise.then((comm) => {\n", - " comm.send(data, metadata, buffers, disposeOnDone);\n", - " });\n", - " };\n", - " var comm = {\n", - " send: sendClosure\n", - " };\n", - " }\n", - " window.PyViz.comms[comm_id] = comm;\n", - " return comm;\n", - " }\n", - " window.PyViz.comm_manager = new JupyterCommManager();\n", - " \n", - "\n", - "\n", - "var JS_MIME_TYPE = 'application/javascript';\n", - "var HTML_MIME_TYPE = 'text/html';\n", - "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", - "var CLASS_NAME = 'output';\n", - "\n", - "/**\n", - " * Render data to the DOM node\n", - " */\n", - "function render(props, node) {\n", - " var div = document.createElement(\"div\");\n", - " var script = document.createElement(\"script\");\n", - " node.appendChild(div);\n", - " node.appendChild(script);\n", - "}\n", - "\n", - "/**\n", - " * Handle when a new output is added\n", - " */\n", - "function handle_add_output(event, handle) {\n", - " var output_area = handle.output_area;\n", - " var output = handle.output;\n", - " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - " if (id !== undefined) {\n", - " var nchildren = toinsert.length;\n", - " var html_node = toinsert[nchildren-1].children[0];\n", - " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var scripts = [];\n", - " var nodelist = html_node.querySelectorAll(\"script\");\n", - " for (var i in nodelist) {\n", - " if (nodelist.hasOwnProperty(i)) {\n", - " scripts.push(nodelist[i])\n", - " }\n", - " }\n", - "\n", - " scripts.forEach( function (oldScript) {\n", - " var newScript = document.createElement(\"script\");\n", - " var attrs = [];\n", - " var nodemap = oldScript.attributes;\n", - " for (var j in nodemap) {\n", - " if (nodemap.hasOwnProperty(j)) {\n", - " attrs.push(nodemap[j])\n", - " }\n", - " }\n", - " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", - " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", - " oldScript.parentNode.replaceChild(newScript, oldScript);\n", - " });\n", - " if (JS_MIME_TYPE in output.data) {\n", - " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", - " }\n", - " output_area._hv_plot_id = id;\n", - " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", - " window.PyViz.plot_index[id] = Bokeh.index[id];\n", - " } else {\n", - " window.PyViz.plot_index[id] = null;\n", - " }\n", - " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " var bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var script_attrs = bk_div.children[0].attributes;\n", - " for (var i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - "function handle_clear_output(event, handle) {\n", - " var id = handle.cell.output_area._hv_plot_id;\n", - " var server_id = handle.cell.output_area._bokeh_server_id;\n", - " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", - " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", - " if (server_id !== null) {\n", - " comm.send({event_type: 'server_delete', 'id': server_id});\n", - " return;\n", - " } else if (comm !== null) {\n", - " comm.send({event_type: 'delete', 'id': id});\n", - " }\n", - " delete PyViz.plot_index[id];\n", - " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", - " var doc = window.Bokeh.index[id].model.document\n", - " doc.clear();\n", - " const i = window.Bokeh.documents.indexOf(doc);\n", - " if (i > -1) {\n", - " window.Bokeh.documents.splice(i, 1);\n", - " }\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle kernel restart event\n", - " */\n", - "function handle_kernel_cleanup(event, handle) {\n", - " delete PyViz.comms[\"hv-extension-comm\"];\n", - " window.PyViz.plot_index = {}\n", - "}\n", - "\n", - "/**\n", - " * Handle update_display_data messages\n", - " */\n", - "function handle_update_output(event, handle) {\n", - " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", - " handle_add_output(event, handle)\n", - "}\n", - "\n", - "function register_renderer(events, OutputArea) {\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " var toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[0]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " events.on('output_added.OutputArea', handle_add_output);\n", - " events.on('output_updated.OutputArea', handle_update_output);\n", - " events.on('clear_output.CodeCell', handle_clear_output);\n", - " events.on('delete.Cell', handle_clear_output);\n", - " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", - "\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " safe: true,\n", - " index: 0\n", - " });\n", - "}\n", - "\n", - "if (window.Jupyter !== undefined) {\n", - " try {\n", - " var events = require('base/js/events');\n", - " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " } catch(err) {\n", - " }\n", - "}\n" - ], - "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + "application/javascript": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", + "application/vnd.holoviews_load.v0+json": "" }, "metadata": {}, "output_type": "display_data" @@ -562,7 +152,7 @@ "id": "577590c1", "metadata": {}, "source": [ - "Before integrating batches, we need do basic preprocessing for each batch, including quality control and filtering." + "Before integrating batches, we need to do basic preprocessing for each batch, including quality control and filtering." ] }, { diff --git a/docs/source/Tutorials(Multi-sample)/Batch_QC.ipynb b/docs/source/Tutorials(Multi-sample)/Batch_QC.ipynb index 02cf000a..da155508 100644 --- a/docs/source/Tutorials(Multi-sample)/Batch_QC.ipynb +++ b/docs/source/Tutorials(Multi-sample)/Batch_QC.ipynb @@ -35,7 +35,7 @@ "id": "80bf0bab", "metadata": {}, "source": [ - "Here we use demo data of olfactory bulb. Download the [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) first." + "Here we use demo data of olfactory bulb. Download the [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) first." ] }, { diff --git a/docs/source/Tutorials(Multi-sample)/Comparative_Analysis.ipynb b/docs/source/Tutorials(Multi-sample)/Comparative_Analysis.ipynb index 19b2e123..4f19e7f3 100644 --- a/docs/source/Tutorials(Multi-sample)/Comparative_Analysis.ipynb +++ b/docs/source/Tutorials(Multi-sample)/Comparative_Analysis.ipynb @@ -9,7 +9,7 @@ "\n", "In scientific research, comparing disturbed or disease samples with control samples allows for the exploration of changes in functional mechanisms at both global and local levels. Stereopy is specifically designed to identify global and local diversities in comparative samples by employing cell-level and gene-level analysis modules, supported by novel algorithms. The cell-level analysis focuses on cell diversity in terms of cell type, cell-cell occurrence, and cell community via multi-sample comparisons. At gene level, Stereopy investigates gene diversity within cell types and cell communities, proposing the concept of constant and conditional markers [[Fang23]](https://doi.org/10.1101/2023.12.04.569485).\n", "\n", - "Here we use Slide-seq mouse kidney samples to test comparative analysis [[Marshall22](https://pubmed.ncbi.nlm.nih.gov/35372810/)]. Please download [test data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f), and here also offers the access to [full data](https://cellxgene.cziscience.com/collections/8e880741-bf9a-4c8e-9227-934204631d2a) from the paper." + "Here we use Slide-seq mouse kidney samples to test comparative analysis [[Marshall22](https://pubmed.ncbi.nlm.nih.gov/35372810/)]. Please download [test data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc), and here also offers the access to [full data](https://cellxgene.cziscience.com/collections/8e880741-bf9a-4c8e-9227-934204631d2a) from the paper." ] }, { diff --git a/docs/source/Tutorials(Multi-sample)/MSData_Clustering.ipynb b/docs/source/Tutorials(Multi-sample)/MSData_Clustering.ipynb index 667a94e0..cdfc6252 100644 --- a/docs/source/Tutorials(Multi-sample)/MSData_Clustering.ipynb +++ b/docs/source/Tutorials(Multi-sample)/MSData_Clustering.ipynb @@ -37,7 +37,7 @@ "id": "e1667ddb", "metadata": {}, "source": [ - "Please download the [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) first. Here we use drosophila data for demo. Main input file formats are GEM/GEF (from Stereo-seq), H5ad (from Scanpy). Add your dataset as below:" + "Please download the [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) first. Here we use drosophila data for demo. Main input file formats are GEM/GEF (from Stereo-seq), H5ad (from Scanpy). Add your dataset as below:" ] }, { diff --git a/docs/source/Tutorials(Multi-sample)/ST_Gears.ipynb b/docs/source/Tutorials(Multi-sample)/ST_Gears.ipynb index d4a0f669..1da30f89 100644 --- a/docs/source/Tutorials(Multi-sample)/ST_Gears.ipynb +++ b/docs/source/Tutorials(Multi-sample)/ST_Gears.ipynb @@ -85,7 +85,7 @@ "source": [ "## Reading Data\n", "\n", - "Download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f)" + "Download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc)" ] }, { diff --git a/docs/source/Tutorials(Multi-sample)/Time_Series_Analysis.ipynb b/docs/source/Tutorials(Multi-sample)/Time_Series_Analysis.ipynb index 2b627731..4d29c3fc 100644 --- a/docs/source/Tutorials(Multi-sample)/Time_Series_Analysis.ipynb +++ b/docs/source/Tutorials(Multi-sample)/Time_Series_Analysis.ipynb @@ -18,7 +18,7 @@ "1. Using `paga` method to find out time seires samples' developmental trajectory.\n", "2. Using `time_series_analysis` method to find essentail genes during development.\n", "\n", - "Download the demo data [Time Series Developing Mouse Brain](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + "Download the demo data [Time Series Developing Mouse Brain](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", "This Data is the embyro developing mouse brain from E9.5 to E16.5." ] diff --git a/docs/source/Tutorials/CellBin_Clustering.ipynb b/docs/source/Tutorials/CellBin_Clustering.ipynb index 6deec7a7..8c5aa4d3 100644 --- a/docs/source/Tutorials/CellBin_Clustering.ipynb +++ b/docs/source/Tutorials/CellBin_Clustering.ipynb @@ -39,7 +39,7 @@ "id": "9906c76e", "metadata": {}, "source": [ - "Firstly, download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) and import Stereopy." + "Firstly, download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) and import Stereopy." ] }, { diff --git a/docs/source/Tutorials/Cell_Cell_Communication.ipynb b/docs/source/Tutorials/Cell_Cell_Communication.ipynb index 5d2b735d..65c0ff52 100644 --- a/docs/source/Tutorials/Cell_Cell_Communication.ipynb +++ b/docs/source/Tutorials/Cell_Cell_Communication.ipynb @@ -2493,7 +2493,7 @@ "\n", "The parameter `regulons` specifies the path of file saving regulons which is output of function of [Gene Regulatory Network](https://stereopy.readthedocs.io/en/latest/Tutorials/Gene_Regulatory_Network.html).\n", "\n", - "You need to specify the path of file which contains the weighted network infomation by parameter `weighted_network_path` . By default, you can download the NicheNet-V2 weighted network files from [here](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + "You need to specify the path of file which contains the weighted network infomation by parameter `weighted_network_path` . By default, you can download the NicheNet-V2 weighted network files from [here](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", "There are tow files about weighted network infomations:\n", "\n", diff --git a/docs/source/Tutorials/Cell_Co_Occurrence.ipynb b/docs/source/Tutorials/Cell_Co_Occurrence.ipynb index 015bee1b..16e42812 100644 --- a/docs/source/Tutorials/Cell_Co_Occurrence.ipynb +++ b/docs/source/Tutorials/Cell_Co_Occurrence.ipynb @@ -29,7 +29,7 @@ "id": "72e2e9dd", "metadata": {}, "source": [ - "Download [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f), and complete basic analysis processing." + "Download [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc), and complete basic analysis processing." ] }, { diff --git a/docs/source/Tutorials/Cell_Community_Detection.ipynb b/docs/source/Tutorials/Cell_Community_Detection.ipynb index 71f6e3c6..562a2bb8 100644 --- a/docs/source/Tutorials/Cell_Community_Detection.ipynb +++ b/docs/source/Tutorials/Cell_Community_Detection.ipynb @@ -75,7 +75,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Download a sample of demo data, [Stereo-seq Mouse Embryo Whole brain](https://ftp.cngb.org/pub/SciRAID/stomics/STDS0000058/stomics/E16.5_E1S3_cell_bin_whole_brain.h5ad). More in [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f)." + "Download a sample of demo data, [Stereo-seq Mouse Embryo Whole brain](https://ftp.cngb.org/pub/SciRAID/stomics/STDS0000058/stomics/E16.5_E1S3_cell_bin_whole_brain.h5ad). More in [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc)." ] }, { diff --git a/docs/source/Tutorials/Cell_Segmentation.ipynb b/docs/source/Tutorials/Cell_Segmentation.ipynb index e976b006..8e15c344 100644 --- a/docs/source/Tutorials/Cell_Segmentation.ipynb +++ b/docs/source/Tutorials/Cell_Segmentation.ipynb @@ -58,7 +58,7 @@ "\n", "All processes of cell segmentation will perform tissue segmentation beforehand. You could the path to tissue segmentation model file by `tissue_seg_model_path`.\n", "\n", - "Download the [Tissue Segmentation Model](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + "Download the [Tissue Segmentation Model](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", "More detail about [Tissue Segmentation](https://stereopy.readthedocs.io/en/latest/Tutorials/Tissue_Segmentation.html)." ] @@ -92,7 +92,7 @@ "id": "b674926b", "metadata": {}, "source": [ - "New V3 model is upload to our [demo](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) named `cell_segmetation_v3.0.onnx`. V3 method don't need to install heavy packages like `tensorflow` and `pytorch`, just import `cell_seg_v3` from `stereo.image`, ignoring the warning." + "New V3 model is upload to our [demo](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) named `cell_segmetation_v3.0.onnx`. V3 method don't need to install heavy packages like `tensorflow` and `pytorch`, just import `cell_seg_v3` from `stereo.image`, ignoring the warning." ] }, { @@ -1065,7 +1065,7 @@ } }, "source": [ - "First, please download the [deep learning model V1](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f). It is assumed that the local storage path is `'../data/seg_models/Demo_CellSegmentation/Deep_Learning_Model_v01/cell_segmetation_v1.0.pth'`.\n", + "First, please download the [deep learning model V1](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc). It is assumed that the local storage path is `'../data/seg_models/Demo_CellSegmentation/Deep_Learning_Model_v01/cell_segmetation_v1.0.pth'`.\n", "\n", "Besides, if you want to use GPU for prediction, set GPU id to the parameter `gpu`, if not, CPU will be used by default." ] @@ -1400,7 +1400,7 @@ "id": "9f06b249", "metadata": {}, "source": [ - "Similarly download the [deep cell model](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) from our cloud disk. It is assumed that the local storage path is `'../data/seg_models/Demo_CellSegmentation/Deep_Cell_Model/'`." + "Similarly download the [deep cell model](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) from our cloud disk. It is assumed that the local storage path is `'../data/seg_models/Demo_CellSegmentation/Deep_Cell_Model/'`." ] }, { @@ -1613,7 +1613,7 @@ "id": "6b8de123", "metadata": {}, "source": [ - "Cellpose uses an improved deep neural network architecture based on the classic Unet structure. This method introduces a residual block to predict the input image and outputs the three matrices of the horizontal and vertical gradients of the image and whether the pixel is in the cell. Three predictions synthesize a gradient vector field. Finally, a thermal field with a fixed point is constructed from this gradient vector field such that all pixels that converge to the same fixed point are grouped together to obtain the shape of a single cell. Please download ​[demo image](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) for Cellpose." + "Cellpose uses an improved deep neural network architecture based on the classic Unet structure. This method introduces a residual block to predict the input image and outputs the three matrices of the horizontal and vertical gradients of the image and whether the pixel is in the cell. Three predictions synthesize a gradient vector field. Finally, a thermal field with a fixed point is constructed from this gradient vector field such that all pixels that converge to the same fixed point are grouped together to obtain the shape of a single cell. Please download ​[demo image](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) for Cellpose." ] }, { diff --git a/docs/source/Tutorials/Gaussian_Smoothing.ipynb b/docs/source/Tutorials/Gaussian_Smoothing.ipynb index 9721946e..2a29c9ec 100644 --- a/docs/source/Tutorials/Gaussian_Smoothing.ipynb +++ b/docs/source/Tutorials/Gaussian_Smoothing.ipynb @@ -31,7 +31,9 @@ "id": "b9ccd373", "metadata": {}, "source": [ - "## Observation on genes" + "## Observation on genes\n", + "\n", + "Here to download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc)." ] }, { diff --git a/docs/source/Tutorials/Gene_Regulatory_Network.ipynb b/docs/source/Tutorials/Gene_Regulatory_Network.ipynb index 6619c9fe..c96fc104 100644 --- a/docs/source/Tutorials/Gene_Regulatory_Network.ipynb +++ b/docs/source/Tutorials/Gene_Regulatory_Network.ipynb @@ -28,7 +28,7 @@ "Essential data and auxilliary datasets: \n", "\n", "1. Spatially resolved transcriptomics data: the matrix of gene expression for each single cell. Each column represents a gene, and each row represents a SRT sample. Values in the matrix are typically gene expression levels, either raw counts or normalized expression (raw counts prefered). SRT expression matrix of bin200 in the mouse brain generated by Stereo-seq is used here, through \n", - " [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + " [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", "\n", "2. Transcription factor gene list: a list of transcription factors of interest. This list is requried for the network inference step. Data can be downloaded through\n", diff --git a/docs/source/Tutorials/High_Resolution_Export.ipynb b/docs/source/Tutorials/High_Resolution_Export.ipynb index cb0d8fd5..e3ace046 100644 --- a/docs/source/Tutorials/High_Resolution_Export.ipynb +++ b/docs/source/Tutorials/High_Resolution_Export.ipynb @@ -17,7 +17,7 @@ "source": [ "In some cases, we need to export part of selected high resolution area in expression matrix while we read them in low resolution.\n", "\n", - "Please download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + "Please download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", "Here we task GEF file as example, you can change `st.io.read_gef` to `st.io.read_gem` to manipulate GEM file." ] diff --git a/docs/source/Tutorials/Interactive_Cluster.ipynb b/docs/source/Tutorials/Interactive_Cluster.ipynb index 29aa43c6..539c02b3 100644 --- a/docs/source/Tutorials/Interactive_Cluster.ipynb +++ b/docs/source/Tutorials/Interactive_Cluster.ipynb @@ -42,7 +42,7 @@ "id": "97a56de6", "metadata": {}, "source": [ - "In this part, we work with the data of mouse olfactory bulb using cell bin (bin size = 40), which has 20277 cells and 28553 genes. Please download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f)." + "In this part, we work with the data of mouse olfactory bulb using cell bin (bin size = 40), which has 20277 cells and 28553 genes. Please download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc)." ] }, { diff --git a/docs/source/Tutorials/Performance.ipynb b/docs/source/Tutorials/Performance.ipynb index 938b8fbc..7e6bb75d 100644 --- a/docs/source/Tutorials/Performance.ipynb +++ b/docs/source/Tutorials/Performance.ipynb @@ -88,7 +88,7 @@ "id": "245109c3", "metadata": {}, "source": [ - "Download the [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) of mouse brain, `SS200000135TL_D1.tissue.gef`." + "Download the [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) of mouse brain, `SS200000135TL_D1.tissue.gef`." ] }, { diff --git a/docs/source/Tutorials/RNA_Velocity.ipynb b/docs/source/Tutorials/RNA_Velocity.ipynb index 6f1041bd..82270ecc 100644 --- a/docs/source/Tutorials/RNA_Velocity.ipynb +++ b/docs/source/Tutorials/RNA_Velocity.ipynb @@ -34,7 +34,7 @@ "id": "12985efe", "metadata": {}, "source": [ - "Import the module to generate loom file, please download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) previously." + "Import the module to generate loom file, please download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) previously." ] }, { diff --git a/docs/source/Tutorials/SingleR.ipynb b/docs/source/Tutorials/SingleR.ipynb index 92b31300..38ae20c9 100644 --- a/docs/source/Tutorials/SingleR.ipynb +++ b/docs/source/Tutorials/SingleR.ipynb @@ -66,7 +66,7 @@ "id": "d64030e7", "metadata": {}, "source": [ - "We have uploaded three references, `BlueprintEncodeData.Rdata`, `MouseRNAseqData.Rdata` and `Mouse_brain_ref.anndata075.h5ad`, click [our data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) for more details.\n", + "We have uploaded three references, `BlueprintEncodeData.Rdata`, `MouseRNAseqData.Rdata` and `Mouse_brain_ref.anndata075.h5ad`, click [our data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) for more details.\n", "\n", "The first two are [human](https://rdrr.io/github/LTLA/celldex/man/BlueprintEncodeData.html) and [mouse](https://rdrr.io/github/LTLA/CellTypeReferences/man/MouseRNAseqData.html) references from R package release, apparently by the file suffix. Click [complete information](https://bioconductor.org/packages/release/data/experiment/vignettes/celldex/inst/doc/userguide.html#3_Immune_references), to get all SingleR references in R package.\n", "\n", diff --git a/docs/source/Tutorials/Spatial_Hotspot.ipynb b/docs/source/Tutorials/Spatial_Hotspot.ipynb index db468948..13753d4a 100644 --- a/docs/source/Tutorials/Spatial_Hotspot.ipynb +++ b/docs/source/Tutorials/Spatial_Hotspot.ipynb @@ -46,7 +46,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Please download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) beforehand." + "Please download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) beforehand." ] }, { diff --git a/docs/source/Tutorials/SquareBin_Clustering.ipynb b/docs/source/Tutorials/SquareBin_Clustering.ipynb index 0c5740d2..21e9330f 100644 --- a/docs/source/Tutorials/SquareBin_Clustering.ipynb +++ b/docs/source/Tutorials/SquareBin_Clustering.ipynb @@ -160,7 +160,7 @@ "id": "9906c76e", "metadata": {}, "source": [ - "Firstly, download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) and import Stereopy." + "Firstly, download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) and import Stereopy." ] }, { diff --git a/docs/source/Tutorials/Tissue_Segmentation.ipynb b/docs/source/Tutorials/Tissue_Segmentation.ipynb index 343d4074..4b9c9372 100644 --- a/docs/source/Tutorials/Tissue_Segmentation.ipynb +++ b/docs/source/Tutorials/Tissue_Segmentation.ipynb @@ -68,17 +68,15 @@ "source": [ "## Tissue segmentation from .TIFF image\n", "\n", - "We now support 4 staining types of **.TIFF** image: **ssDNA**, **DAPI**, **HE** and **mIF**.\n", - "\n", - "We have two models to process these four types images:\n", + "We now support 4 staining types of **.TIFF** image: **ssDNA**, **DAPI**, **HE** and **mIF** and have two models to process these four types images:\n", "\n", " 1. tissueseg_bcdu_H&E_20240201_tf.onnx: be used for staining type HE.\n", "\n", " 2. tissueseg_bcdu_SDI_230523_tf.onnx: be used for others staining types.\n", "\n", - "The following part shows a case to segment a ssDNA-type image, and please download our [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f).\n", + "The following part shows a case to segment a ssDNA-type image, and please download our [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc).\n", "\n", - "Download the [deep learning model](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f). It is assumed that the local storage path of the model is `'../data/seg_models/tissueseg_bcdu_SDI_230523_tf.onnx'`.\n", + "Download the [deep learning model](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc). It is assumed that the local storage path of the model is `'../data/seg_models/tissueseg_bcdu_SDI_230523_tf.onnx'`.\n", "\n", "More detail in [stereo.image.tissue_cut.SingleStrandDNATissueCut](../content/stereo.image.tissue_cut.SingleStrandDNATissueCut.__init__.html)." ] diff --git a/docs/source/Tutorials/Trajectory_Analysis.ipynb b/docs/source/Tutorials/Trajectory_Analysis.ipynb index bb614786..b3c64cdf 100644 --- a/docs/source/Tutorials/Trajectory_Analysis.ipynb +++ b/docs/source/Tutorials/Trajectory_Analysis.ipynb @@ -29,7 +29,7 @@ "id": "ed0edbfd", "metadata": {}, "source": [ - "Before running `PAGA`, we need to create a group of cluster results and a neigbobor pairwise matrix. Here we use mouse embryo data for demo. Download the [example data](http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f) first." + "Before running `PAGA`, we need to create a group of cluster results and a neigbobor pairwise matrix. Here we use mouse embryo data for demo. Download the [example data](http://116.6.21.110:8090/share/c5d9e7f3-7d66-4154-87e1-a740f4bb4dbc) first." ] }, {