-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlikelihoodDifference.R
executable file
·540 lines (437 loc) · 18.4 KB
/
likelihoodDifference.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
library(pracma) #strcmp function library
library(data.table) #fread function library
library(Rcpp)
set.seed(041205)
##############################
### script input interface ###
##############################
l<-commandArgs(TRUE)
getArgs<-function(x,l)
unlist(strsplit(grep(paste("^",x,"=",sep=""),l,val=T),"="))[2]
Args<-function(l,args){
if(! all(sapply(strsplit(l,"="),function(x)x[1])%in%names(args))){
cat("Error -> ",l[!sapply(strsplit(l,"="),function(x)x[1])%in%names(args)]," is not a valid argument")
q("no")
}
arguments<-list()
for(a in names(args))
arguments[[a]]<-getArgs(a,l)
if(any(!names(args)%in%names(arguments)&sapply(args,is.null))){
cat("Error -> ",names(args)[!names(args)%in%names(arguments)&sapply(args,is.null)]," is not optional!\n")
q("no")
}
for(a in names(args))
if(is.null(arguments[[a]]))
arguments[[a]]<-args[[match(a,names(args))]]
arguments
}
print.args<-function(args,des){
if(missing(des)){
des<-as.list(rep("",length(args)))
names(des)<-names(args)
}
cat("-> Needed arguments:\n")
mapply(function(x)cat("\t",x,":",des[[x]],"\n"),cbind(names(args)[sapply(args,is.null)]))
cat("-> Optional arguments (defaults):\n")
mapply(function(x)cat("\t",x," (",args[[x]],")",":",des[[x]],"\n"),cbind(names(args)[!sapply(args,is.null)]))
q("no")
}
## choose your parameters and defaults
## NULL is an non-optional argument, NA is an optional argument with no default, others are the default arguments
args<-list(file = NA, #single basename of file to analize (does not need the list 'filelist' for multiple files)
fileList = NA, #list of basenames for GUNZIPPED .genolike, .mafs and .par files
wind = NA, #size of window for depth and genotype likelihoods. we work on a chromosome-basis.
minInd = 1, #min ind having reads
CNVInd = NA, #which Individual to consider (one at the time for now)
quantileTrim ="0,1", #quantiles for trimming
maxPloidy=6,
eps = .0005 #effect of sequencing and mapping error
)
des<-list(fileList="[string] list of .genolike and phat.mafs and eventual .windows files",
wind="[integer] Size of window for depth and genotype likelihoods (NA)",
minInd="[integer] min Nr of individuals per locus having data (1)",
CNVInd ="[integers] which Individuals might have CNV",
beta="[numerics] beta parameters comma separated (NA, read from .par file)",
quantileTrim="[integers] comma-separated quantiles for trimming (0,1)",
maxploidy="max ploidy",
eps="sequencing/mapping error rate "
)
##get arguments and add to workspace
##do not change
if(length(l)==0) print.args(args,des)
attach(Args(l,args))
args <- commandArgs(TRUE)
if(length(args)==0){
cat(" Arguments: output prefix\n")
q("no")
}
##read file names from the prefix list and create inputs/outputs
if(is.na(file) & is.na(fileList)){
cat("You MUST input either file= or fileList= when using the R script\n")
q("no")
}
if(!is.na(file))
filez <- file
if(is.na(file))
filez <- unlist( read.table(fileList, header=FALSE, as.is=T) )
fileVector <- c(); hmmVector <- c(); outPdf <- c(); outTxt <- c();
BASENAMEFILE <- c();
for(i in 1:length(filez)){
fileVector[i] <- paste(filez[i],".genolikes",sep="")
hmmVector[i] <- paste(filez[i],".hiddenMarkovPloidy",sep="")
splittedName <- unlist(strsplit(filez[i],split="/"))
BASENAMEFILE[i] <- splittedName[length(splittedName)]
outPdf[i] <- paste(filez[i],".CNV.pdf",sep="")
outTxt[i] <- paste(filez[i],".hiddenMarkovCNV",sep="")
}
isNumericCNVInd <- all(!is.na(CNVInd)) #check for choice of individuals
##individuals chosen for analysis (one by one at the moment)
##if chosenInd id NA it will be assigned as all individuals later
if(isNumericCNVInd)
CNVInd <- eval( parse( text=paste("c(",CNVInd,")",sep="") ) )
wind <- as.numeric(wind)
minInd <- as.numeric(minInd)
##print Rscript input
cat("----------\nfileList: ", fileList, " wind: ", wind," minInd: ", minInd, " CNVInd: ", CNVInd ," quantileTrim: ", quantileTrim, " eps: ", eps, "\n-----------\n" )
cppFunction('NumericVector alleleFrequencies(NumericVector major, NumericVector minor, int nInd, int minInd, double eps){
int totCountsNorm = 0;
int sites = major.size()/nInd;
NumericVector out( sites );
int indWithData;
NumericVector pis( nInd );
NumericVector wis( nInd );
int ni = 0;
int nt = 0;
int normC;
for(int s=0;s<sites;s++){
totCountsNorm = 0;
indWithData = nInd;
normC = 0;
for(int i=0;i<nInd;i++){
totCountsNorm += major[s*nInd+i] + minor[s*nInd+i];
}
//if the site is variable
for(int i=0;i<nInd;i++){
ni = minor[s*nInd+i];
nt = major[s*nInd+i] + minor[s*nInd+i];
if(nt==0){//if we dont have any reads for individual i
indWithData--;
pis[i] = 0;
wis[i] = 0;
continue;
}
pis[i] = (ni-eps*nt)/(nt*(1-2*eps));
wis[i] = (double)nt/totCountsNorm; //weights infinite ploidy
}
if(indWithData < minInd){
out[s] = -1;
}
else{
out[s] = 0;
for(int i=0;i<nInd;i++)
out[s] += wis[i]*pis[i];
}
}
return(out);
}'
)
llkCalc <- function(count,delta,TRANS,alpha,beta,genolike){
N <- nrow(TRANS)
Total <- dim(count)[1]
forwrd <- matrix(0, Total, N)
forwrd2 <- matrix(0, Total, N)
bckwrd <- matrix(0, Total, N)
bckwrd2 <- matrix(0, Total, N)
dens <- matrix(0, Total, N)
scale <- rbind(1, matrix(0, nrow=Total-1))
scale2 <- rbind(1, matrix(0, nrow=Total-1))
cm <- max(count)
if(cm > 50000){
dnorm <- as.matrix(lgamma(count + 1))
} else {
tmp <- cumsum(rbind(0, log(as.matrix(1:max(count)))))
dnorm <- as.matrix(tmp[count+1])
}
densLog <- matrix(1, nrow=Total) %*% (alpha * log(beta/(1+beta)) - lgamma(alpha)) - count %*% log(1+beta) + lgamma(count %*% matrix(1, ncol=N) + matrix(1, nrow=Total) %*% alpha) - dnorm %*% matrix(1, ncol=N)
dens2 <- matrix(0,nrow=nrow(densLog),ncol=dim(genolike)[2])
for(ii in 1:dim(genolike)[2]) dens2[,ii] <- densLog[,ii] + genolike[,ii]
#dens <- exp( densLog )
dens2 <- exp( dens2 )
#dens <- apply(dens, 2, function(x) {x[x==0 | is.na(x) | is.nan(x)] <- .Machine$double.xmin; x})
dens2 <- apply(dens2, 2, function(x) {x[x==0 | is.na(x) | is.nan(x)] <- .Machine$double.xmin; x})
#forwrd[1,] <- delta*dens[1,];
forwrd2[1,] <- delta*dens2[1,]
for(t in 2:Total){
#forwrd[t,] <- (forwrd[t-1,] %*% TRANS) * dens[t,]
forwrd2[t,] <- (forwrd2[t-1,] %*% TRANS) * dens2[t,]
#scale[t] <- sum(forwrd[t,])
scale2[t] <- sum(forwrd2[t,])
#forwrd[t,] <- forwrd[t,] / scale[t]
forwrd2[t,] <- forwrd2[t,] / scale2[t]
if(is.nan(forwrd2[t,]))
forwrd2[t,] <- .Machine$double.xmin
}
llk <- log(sum(forwrd2[Total,])) + sum(log(scale2))
return(llk)
}
##logarithmic normalization of a vector
logRescale <- function(v){
L <- length(v)
m <- max(v)
w <- which.max(v)
diffVec <- v[-w] - m
if(any(diffVec < -700)){
idx <- which(diffVec < -700)
tooSmall <- diffVec[idx]
sortVec <- sort(tooSmall, index.return=TRUE)
rescaled <- seq(-700, -800, length.out=length(tooSmall))
tooSmall[sortVec$ix] <- rescaled
diffVec[idx] <- tooSmall
}
res <- m + log( 1 + sum( exp( diffVec ) ) )
return( v - res )
}
##sum of values in a windows. When lociSNP=loci all values in the windows are used.
##avg=TRUE performs average instead of sum. ws=window size and dp=vector of data.
sumGeno <- function(dp,ws,loci,lociSNP=loci,findSNP=1:length(loci),avg=FALSE){
L <- length(dp)
S <- seq(loci[1],loci[length(loci)],ws)
S <- c(S, loci[length(loci)] )
res <- sapply(1:(length(S)-1), function(ll){
if(ll<(length(S)-1))
idx <- which(lociSNP>=S[ll] & lociSNP<S[ll+1])
if(ll==(length(S)-1))
idx <- which(lociSNP>=S[ll] & lociSNP<=S[ll+1])
if(length(idx)==0)
return(c())
v <- dp[findSNP[idx]]
if(!avg)
return( sum( v ) )
if(avg)
return( mean(v) )
})
return(unlist(res))
}
sumGenoAll <- function(dp,ws=1,loci,lociSNP=loci,avg=FALSE){
L <- length(dp)
S <- c( seq(loci[1],loci[length(loci)-1],ws), loci[length(loci)] )
res <- sapply(1:(length(S)-1), function(ll){
idx <- which(lociSNP>S[ll] & lociSNP<S[ll+1])
v <- dp[idx]
if(!avg)
return( sum( v ) )
if(avg)
return( mean(v) )
})
return(res)
}
##sum of logarithm on rows and cols of a matrix
rowSumsLog <- function(X){
res <- apply(X, 1, function(t){
m <- max(t)
w <- which.max(t)
diffVec <- t[-w] - m
diffVec[diffVec < -700] <- -700
diffVec[diffVec == 0] <- -0.0001
return( m + log( 1 + sum( exp( diffVec ) ) ) )
})
return( res )
}
colSumsLog <- function(X){
res <- apply(X, 2, function(t){
m <- max(t)
w <- which.max(t)
diffVec <- t[-w] - m
diffVec[diffVec < -700] <- -700
diffVec[diffVec == 0] <- -0.0001
return( m + log( 1 + sum( exp( diffVec ) ) ) )
})
return( res )
}
##Likelihood of f=data vector given genotype. gl=genotype likelihoods vector. h=inbreeding coefficient.
pGenoData <- function(f,winL,gl,nInd=1,findSNP=1:sum(winL),h=0){
y = ncol(gl)-1
Lf = sum(winL)
winIdx=cumsum(c(0,winL))
X <- rep(0,Lf)
for(l in 1:length(f)){
freq <- f[l]
idx <- (winIdx[l]+1):(winIdx[l+1])
p <- dbinom(0:y,y,freq,log=TRUE)
p[is.infinite(p)]=-1000
#glSum <- gl[idx,] + matrix( rep( p, nInd*length(idx) ), nrow=nInd*length(idx), byrow=T )
glSum <- apply( gl[idx,], 1, function(r) r + p )
X[(winIdx[l]+1):(winIdx[l+1])] <- colSumsLog( glSum )
#print(X[(winIdx[l]+1):(winIdx[l]+2)])
}
return( X )
}
pGenoDataAll <- function(f,gl,nInd=1,h=0){
y = ncol(gl)-1
Lf = length(f)
nInd = dim(gl)[1] / Lf
matrix( rep( dbinom(0:y,y,f,log=TRUE), nInd ), nrow=nInd, byrow=T )
X <- c()
for(l in 1:length(f)){
freq <- f[l]
idx <- ((l-1)*nInd+1):(l*nInd)
p <- dbinom(0:y,y,freq,log=TRUE)
p[is.infinite(p)]=-1000
glSum <- gl[idx,] + matrix( rep( dbinom(0:y,y,freq,log=TRUE), nInd ), nrow=nInd, byrow=T )
X[l] <- sum( rowSumsLog( glSum ) )
}
return( X )
}
pGenoDataSingle <- function(f,gl,h=0){ #use one individual at a time
y = ncol(gl)-1
Lf = dim(gl)[1]
fVector=rep(f,Lf)
nInd = 1
matrix( rep( dbinom(0:y,y,fVector,log=TRUE), nInd ), nrow=nInd, byrow=T )
X <- c()
for(l in 1:Lf){
freq <- f[l]
idx <- ((l-1)*nInd+1):(l*nInd)
p <- dbinom(0:y,y,freq,log=TRUE)
p[is.infinite(p)]=-1000
glSum <- gl[idx,] + matrix( rep( dbinom(0:y,y,freq,log=TRUE), nInd ), nrow=nInd, byrow=T )
X[l] <- sum( rowSumsLog( glSum ) )
}
#find sites hvor f passer bedst - ordering?
return( X )
}
##read genotype likelihood at a certain site, for a certain dataset GL,
##given ploidy and number of individuals
readGL <- function(site,ploidy,nInd=1,GL){
col = cumsum( c(1:(ploidy+1)) )
if(nInd > 1){
res <- as.vector( sapply(site, function(x) return( c( ((x-1)*nInd+1):(x*nInd) ) ) ) )
site <- res
}
if(length(site)==1){
return( GL[site, c(col[ploidy]:(col[ploidy+1]-1))] )}
else{
return( GL[site, c(col[ploidy]:(col[ploidy+1]-1))] )}
}
#need genolikes >>> need frequencies. need to import counts as well.
for(i in 1:length(fileVector)){ #loop over input files
cat("==> Analyze ", filez[i], "\n",sep="")
##read in the data from .mafs and .genolikes files
GL <- fread(input=fileVector[i],sep="\t",showProgress=TRUE,header=FALSE,data.table=FALSE)
com <- paste("sed -n '6~8p' ",hmmVector[i], sep="")
LLKclean <- unlist(fread(com,sep="\n",showProgress=TRUE,header=FALSE,data.table=FALSE))
sortLLK <- sort(LLKclean,index.return=TRUE,decreasing=TRUE)
for(j in 1:length(LLKclean)){
if( !any(sortLLK$ix[j] == CNVInd) ){
bestIdx <- j
bestLLK <- sortLLK$x[j]
break
}
}
cat("\tBest LlK ",sortLLK$x[j]," in individual ",sortLLK$ix[j],"\n",sep="")
com <- paste("sed -n '", (bestIdx-1)*8+4 , "p' ",hmmVector[i], sep="")
alphaBest <- na.omit(unlist(fread(com,sep="\t",showProgress=TRUE,header=FALSE,data.table=FALSE)))
com <- paste("sed -n '", (bestIdx-1)*8+5 , "p' ",hmmVector[i], sep="")
betaBest <- na.omit(unlist(fread(com,sep="\t",showProgress=TRUE,header=FALSE,data.table=FALSE)))
com <- paste("sed -n '", (bestIdx-1)*8+2 , "p' ",hmmVector[i], sep="")
deltaBest <- na.omit(unlist(fread(com,sep="\t",showProgress=TRUE,header=FALSE,data.table=FALSE)))
com <- paste("sed -n '", (bestIdx-1)*8+3 , "p' ",hmmVector[i], sep="")
TRANSbest <- na.omit(unlist(fread(com,sep="\t",showProgress=TRUE,header=FALSE,data.table=FALSE)))
TRANSbest <- matrix(TRANSbest, ncol=length(TRANSbest)/2, nrow=length(TRANSbest)/2)
com <- paste("sed -n '", (bestIdx-1)*8+7 , "p' ",hmmVector[i], sep="")
statesBest <- na.omit(unlist(fread(com,sep="\t",showProgress=TRUE,header=FALSE,data.table=FALSE)))
if(length(statesBest)<length(deltaBest)){
L <- length(deltaBest)
dL <- length(deltaBest)-length(statesBest)
sortDelta <- sort(deltaBest,index.return=TRUE,decreasing=TRUE)
rmIdx <- sortDelta$ix[ seq(L-dL+1, L, 1) ]
deltaBest <- deltaBest[-c(rmIdx)]
TRANSbest <- as.matrix( TRANSbest[-c(rmIdx),-c(rmIdx)] )
}
rowsGL <- dim(GL)[1]
nInd <- length( unique( GL[,3] ) )
sites <- unique( GL[ ,2] )
DP <- GL[ ,5]
#calculate allele frequencies
majorReads <- GL[,8]
minorReads <- GL[,9]
freqs <- alleleFrequencies(majorReads,minorReads,nInd,minInd,eps) #frequencies (used for SNPs on a single individual)
GL <- GL[ ,-c(1:9)]
###############################
## begin of FOR loop to ##
## read one genome at a time ##
###############################
diffLLK <- rep(NA,length(CNVInd))
fileCounter = 1
##open pdf plot connection
pdf(outPdf[i])
title <- sprintf("Difference of LLK calculated on the best scoring model\n%s",BASENAMEFILE[i])
for(whichInd in 1:nInd){ #loop over individuals
idxSingle <- seq(whichInd,rowsGL,nInd)
majorSingle <- majorReads[idxSingle]
minorSingle <- minorReads[idxSingle]
DPsingle <- DP[idxSingle]; GLsingle <- GL[idxSingle, ] #individual depth/genolikes
##trim the depth at the chosen quantile
quantiles <- eval( parse( text=paste("c(",quantileTrim,")",sep="") ) )
q <- quantile( DPsingle, quantiles )
idx <- which( DPsingle<=as.numeric(q[2]) & DPsingle>=as.numeric(q[1]) )
DPsingle <- DPsingle[idx] #individual filtered data
GLsingle <- GLsingle[idx, ] #...""
sitesIndiv <- sites[idx] #......""
freqsIndiv <- freqs[idx] #......""
majorSingle <- majorReads[idx] #......""
minorSingle <- minorReads[idx] #......""
idxTot = as.vector( sapply(idx, function(j) ((j-1)*nInd+1):(j*nInd) ) )
GLfiltered <- GL[idxTot, ] #all data filtered
DPfiltered <- DP[idxTot] #......""
##find SNPs with thresholds .1<f<.9 and data in the individual
findSNP <- which( freqsIndiv>.1 & freqsIndiv<.9 )
freqsSNP <- freqsIndiv[findSNP]
sitesSNP <- sitesIndiv[findSNP]
totSNP <- as.vector( sapply(findSNP, function(j) ((j-1)*nInd+1):(j*nInd) ) )
##DPSNP = DPsingle[totSNP] I think it is not needed
#frequencies over windows
#winAnalysis <- freqsSingle( majorSingle, minorSingle, ws=wind, sitesIndiv, sitesSNP, findSNP)
#winFreq <- winAnalysis$winF
#winLth <- winAnalysis$winL
#geno2 <- matrix(0, nrow=maxPloidy, ncol=sum(winLth))
geno2 <- matrix(0, nrow=maxPloidy, ncol=length(freqsSNP))
for(pp in 1:maxPloidy) #change ploidy
geno2[pp,] <- pGenoDataAll( f=freqsSNP, gl=readGL( findSNP, pp, nInd=1, GLsingle ), nInd=1 )
#print(geno2)
#for(pp in 1:maxPloidy) #change ploidy
#geno2[pp,] <- pGenoData( f=winFreq, winL=winLth, gl=readGL( 1:sum(winLth), pp, nInd=1, GLsingle ), findSNP=findSNP, nInd=1 )
##...and per window
#print(dim(geno2))
#geno <- apply( geno2, 1, function(x) sumGeno(x,wind,sitesIndiv,sitesSNP,findSNP) )
geno <- apply( geno2, 1, function(x) sumGenoAll(x,wind,sitesIndiv,sitesSNP) )
DPmean <- sumGeno( DPsingle, wind, sitesIndiv, sitesIndiv, 1:length(sitesIndiv), avg=TRUE )
##clean from NA, NaN or infinite values
keepSites <- apply( geno, 1, function(x) sum(is.na(x) | is.nan(x) | is.infinite(x))==0 )
#print(which(keepSites))
DPmean <- DPmean[which(keepSites)]
geno <- geno[which(keepSites), ]
#keepSites <- which( !is.na(DPmean) & !is.nan(DPmean) & !is.infinite(DPmean) )
#print(keepSites)
#DPmean = DPmean[keepSites]
#geno = geno[keepSites,]
##rescale likelihood of the data (avoids underflow)
genoResc <- t( apply( geno , 1, logRescale ) )
genoResc[genoResc>-.00001]=-.00001
##some initial parameters
delta=rep(1/maxPloidy,maxPloidy) #i think it is ok without prior info
Pi0=matrix(1/maxPloidy,nrow=maxPloidy,ncol=maxPloidy) #tridiagonal makes more sense?
count <- matrix(DPmean,ncol=1)
#choose columns
llkData <- llkCalc(count,deltaBest,TRANSbest,alphaBest,betaBest,as.matrix(genoResc[,statesBest]))
diffLLK[fileCounter] <- abs(bestLLK - llkData)
cat("\tFile: ",BASENAMEFILE[i]," individual ",whichInd," ",sep="")
cat( "\tLLK abs diff ", diffLLK[fileCounter],sep="","\n")
cat("File: ",BASENAMEFILE[i]," individual ",whichInd,"\n",sep="",file=outTxt[i],append=!(fileCounter==1))
cat( diffLLK[fileCounter],"\n",file=outTxt[i],append=TRUE)
fileCounter=fileCounter+1
}
colour <- rep("green",nInd); colour[CNVInd] <- "orange"
barplot( diffLLK, col=colour, xlab="Individual", ylab="bestLLK - IndividualLLK", main=title )
dev.off()
}