-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrlev.py
356 lines (297 loc) · 10.3 KB
/
rlev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import pickle
import sys
from collections import Counter
import click
import numpy as np
from scipy import sparse
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
# Minimum document frequency for word features
DEFAULT_WORD_FEATURE_MIN_DF = 250
# Minimum number of word features for document
# to be included when building word feature model
DEFAULT_WORD_FEATURE_MIN_FEATURES = 2
@click.group()
def cli():
pass
@cli.command("format-input")
@click.argument("infile", type=click.File("rt"))
@click.option("--with-labels", is_flag=True)
def format_input(infile, with_labels):
n_fields = 8 if with_labels else 7
for line in infile:
fields = line.strip().split("\t")
if len(fields) != n_fields:
continue
try:
if with_labels:
first_fields = (
int(fields[0]),
int(fields[1]),
)
else:
first_fields = (int(fields[0]),)
print(
*first_fields,
float(fields[2]),
float(fields[3]),
float(fields[4]),
float(fields[5]),
fields[6],
fields[7],
sep="\t",
)
except ValueError:
continue
@cli.command("create-count-vectorizer")
@click.argument("infile", type=click.File("rt"))
@click.argument("outfile", type=click.File("wb"))
@click.option(
"--min-df",
type=int,
help="Minimum document frequency",
default=DEFAULT_WORD_FEATURE_MIN_DF,
)
def create_count_vectorizer(
infile,
outfile,
min_df,
):
"""Build a CountVectorizer based on input corpus."""
vectorizer = CountVectorizer(
min_df=min_df,
binary=True,
stop_words="english",
)
vectorizer.fit(infile)
pickle.dump(vectorizer, outfile)
def chunks(items, n):
curr_chunk = []
for item in items:
curr_chunk.append(item)
if len(curr_chunk) == n:
yield curr_chunk
curr_chunk = []
if curr_chunk:
yield curr_chunk
@cli.command("create-word-feature-model-inputs")
@click.argument("infile", type=click.File("rt"))
@click.argument("outfile", type=click.File("wb"))
@click.option("--title-vectorizer", type=click.File("rb"), required=True)
@click.option("--abstr-vectorizer", type=click.File("rb"), required=True)
@click.option(
"--min-word-features",
type=int,
default=DEFAULT_WORD_FEATURE_MIN_FEATURES,
help="Minimum number of word features for a document to be "
"included in output matrix/labels.",
)
def create_word_feature_model_inputs(
infile,
outfile,
title_vectorizer,
abstr_vectorizer,
min_word_features,
):
"""Create the input matrix and label array for a word feature model."""
title_vectorizer = pickle.load(title_vectorizer)
abstr_vectorizer = pickle.load(abstr_vectorizer)
Y = None
X = None
line_chunks = chunks(infile, 100000)
for chunk in line_chunks:
fields = [line.strip().split("\t") for line in chunk]
# Only select rows where we can extract 3 fields.
fields = [f for f in fields if len(f) == 3]
title_features = title_vectorizer.transform(f[1] for f in fields)
abstr_features = abstr_vectorizer.transform(f[2] for f in fields)
features = sparse.hstack((title_features, abstr_features))
# Subtract 1 since input rlevs are 1-indexed
rlevs = np.array([int(f[0]) - 1 for f in fields])
row_sums = features.sum(axis=1)
wc_mask = np.greater_equal(row_sums, min_word_features).A1
features = features[wc_mask, :]
rlevs = rlevs[wc_mask]
if X is None:
X = features
else:
X = sparse.vstack((X, features))
if Y is None:
Y = rlevs
else:
Y = np.hstack((Y, rlevs))
print("X:", X.shape, type(X))
print("Y:", Y.shape, type(Y))
pickle.dump((X, Y), outfile)
@cli.command("train-lr-model")
@click.argument("infile", type=click.File("rb"))
@click.argument("outfile", type=click.File("wb"))
def train_lr_model(
infile,
outfile,
):
"""Train word feature model."""
X, Y = pickle.load(infile)
model = LogisticRegression(
penalty="l2",
C=1e5,
)
model.fit(X, Y)
pickle.dump(model, outfile)
@cli.command("get-rlev-priors")
@click.argument("infile", type=click.File("rt"))
@click.argument("outfile", type=click.File("wb"))
def get_rlev_priors(
infile,
outfile,
):
"""Create the input matrix and label array for a word feature model."""
# 1-indexed input
counts = Counter(int(line.strip()) - 1 for line in infile)
total_count = sum(counts.values())
priors = [
counts.get(rlev, 0) / total_count for rlev in range(0, max(counts.keys()) + 1)
]
pickle.dump(priors, outfile)
def _get_combined_model_features(
*,
titles,
ref_probs,
abstracts,
title_vectorizer,
abstr_vectorizer,
rlev_priors,
word_feature_model,
min_word_features,
):
ref_probs = np.matrix([[np.float64(x) for x in line] for line in ref_probs])
title_features = title_vectorizer.transform(titles)
abstr_features = abstr_vectorizer.transform(abstracts)
word_features = sparse.hstack((title_features, abstr_features))
row_sums = word_features.sum(axis=1)
wc_mask = np.less(row_sums, min_word_features).A1
word_probs = word_feature_model.predict_proba(word_features)
# If a given row has fewer than `min_word_features`
# word features, then use priors instead of results
# from word feature model.
word_probs[wc_mask] = rlev_priors
features = np.hstack((ref_probs, word_probs))
return features
@cli.command("create-combined-model-inputs")
@click.argument("infile", type=click.File("rt"))
@click.argument("outfile", type=click.File("wb"))
@click.option("--title-vectorizer", type=click.File("rb"), required=True)
@click.option("--abstr-vectorizer", type=click.File("rb"), required=True)
@click.option("--word-feature-model", type=click.File("rb"), required=True)
@click.option("--rlev-priors", type=click.File("rb"), required=True)
@click.option(
"--min-word-features",
type=int,
default=DEFAULT_WORD_FEATURE_MIN_FEATURES,
help="Minimum number of word features for a document to be "
"included in output matrix/labels.",
)
def create_combined_model_inputs(
infile,
outfile,
title_vectorizer,
abstr_vectorizer,
word_feature_model,
rlev_priors,
min_word_features,
):
"""Create the input matrix and label array for the combined model."""
title_vectorizer = pickle.load(title_vectorizer)
abstr_vectorizer = pickle.load(abstr_vectorizer)
word_feature_model = pickle.load(word_feature_model)
rlev_priors = pickle.load(rlev_priors)
Y = None
X = None
line_chunks = chunks(infile, 100000)
for chunk in line_chunks:
lines = [line.strip().split("\t") for line in chunk]
# Only select rows where we can extract 7 fields.
# rlev, ref-prob 1-4, title, abstract
lines = [f for f in lines if len(f) == 7]
if not lines:
continue
features = _get_combined_model_features(
ref_probs=[line[1:5] for line in lines],
titles=[line[5] for line in lines],
abstracts=[line[6] for line in lines],
title_vectorizer=title_vectorizer,
abstr_vectorizer=abstr_vectorizer,
word_feature_model=word_feature_model,
min_word_features=min_word_features,
rlev_priors=rlev_priors,
)
# Subtract 1 since input rlevs are 1-indexed
rlevs = np.array([int(f[0]) - 1 for f in lines])
if X is None:
X = features
else:
X = np.vstack((X, features))
if Y is None:
Y = rlevs
else:
Y = np.hstack((Y, rlevs))
print("X:", X.shape, type(X))
print("Y:", Y.shape, type(Y))
pickle.dump((X, Y), outfile)
@cli.command("get-combined-model-predictions")
@click.argument("infile", type=click.File("rt"))
@click.option("--title-vectorizer", type=click.File("rb"), required=True)
@click.option("--abstr-vectorizer", type=click.File("rb"), required=True)
@click.option("--word-feature-model", type=click.File("rb"), required=True)
@click.option("--rlev-priors", type=click.File("rb"), required=True)
@click.option(
"--min-word-features",
type=int,
default=DEFAULT_WORD_FEATURE_MIN_FEATURES,
help="Minimum number of word features for a document to be "
"included in output matrix/labels.",
)
@click.option("--combined-model", type=click.File("rb"), required=True)
@click.option("--with-labels", is_flag=True)
def get_combined_model_predictions(
infile,
title_vectorizer,
abstr_vectorizer,
word_feature_model,
rlev_priors,
min_word_features,
combined_model,
with_labels,
):
"""Get combined model probabilities."""
title_vectorizer = pickle.load(title_vectorizer)
abstr_vectorizer = pickle.load(abstr_vectorizer)
word_feature_model = pickle.load(word_feature_model)
rlev_priors = pickle.load(rlev_priors)
combined_model = pickle.load(combined_model)
line_chunks = chunks(infile, 100000)
n_fields = 8 if with_labels else 7
pre = 2 if with_labels else 1
for chunk in line_chunks:
lines = [line.strip().split("\t") for line in chunk]
# Only select rows where we can extract `n_fields` fields.
# id, rlev (if with_labels is True), ref-prob 1-4, title, abstract
lines = [f for f in lines if len(f) == n_fields]
if not lines:
continue
features = _get_combined_model_features(
ref_probs=[line[pre : pre + 4] for line in lines],
titles=[line[pre + 4] for line in lines],
abstracts=[line[pre + 5] for line in lines],
title_vectorizer=title_vectorizer,
abstr_vectorizer=abstr_vectorizer,
word_feature_model=word_feature_model,
min_word_features=min_word_features,
rlev_priors=rlev_priors,
)
id_rlev = np.matrix([line[0:pre] for line in lines])
probs = combined_model.predict_proba(features)
results = np.hstack((id_rlev, probs))
np.savetxt(sys.stdout, results, fmt="%s", delimiter="\t")
if __name__ == "__main__":
cli()